則由題意知
|
因?yàn)閿?shù)列{an}各項(xiàng)為正數(shù),所以d>0,
所以把a(bǔ)=1,b=1代入方程組解得
|
則an=a1+(n-1)d=1+(n-1)=n,bn=b1qn-1=2n-1;
(2)由(1)知等差數(shù)列{an}的前n項(xiàng)和Sn=na1+
n(n-1) |
2 |
所以
Sn |
n |
d |
2 |
所以數(shù)列{
Sn |
n |
d |
2 |
1 |
2 |
所以T=na+
n(n-1) |
2 |
d |
2 |
n(n-1) |
4 |
n2+3n |
4 |
Sn |
n |
|
|
n(n-1) |
2 |
Sn |
n |
d |
2 |
Sn |
n |
d |
2 |
1 |
2 |
n(n-1) |
2 |
d |
2 |
n(n-1) |
4 |
n2+3n |
4 |