精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 1,7,19按此規(guī)律f(n)的表達式是多少?證明1/f(1)+1/f(2)+1/f(3)…+1/f(n)<4/3

    1,7,19按此規(guī)律f(n)的表達式是多少?證明1/f(1)+1/f(2)+1/f(3)…+1/f(n)<4/3
    數學人氣:782 ℃時間:2020-03-24 10:59:59
    優(yōu)質解答
    f(1)=1;f(2)=6*(2-1)+1;f(3)=6*(3-1)+f(2)……
    可知f(n)=6*(n-1)+f(n-1)=6*(n-1)+6*(n-2)+f(n-2)=……=6*[(n-1)+(n-2)+……+(2-1)]+f(1)=6n(n-1)/2+1=3n(n-1)+1
    所以,1/f(1)+1/f(2)+1/f(3)…+1/f(n)=1+1/7+1/9+……+1/[3n(n-1)+1]<1+1/7+1/9+……+1/[3n(n-1)]【∵1/[3n(n-1)+1]<1/[3n(n-1)]】=1/3{3+1/(2*1)+1/(3*2)+……+1/[n(n-1)]}=1/3[3+1-1/2+1/2-1/3+……+1/(n-1)-1/n]=1/3(3+1-1/n)=4/3-1/3n<4/3
    證畢
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機版