π |
3 |
π |
3 |
即x=
k′π |
2 |
π |
6 |
函數(shù)y=sin(2x+
π |
3 |
得到y=sin(2x?2φ+
π |
3 |
函數(shù)y=sin(2x?2φ+
π |
3 |
π |
3 |
π |
2 |
即:x=φ+
π |
12 |
kπ |
2 |
由于對(duì)稱(chēng)軸相同,
k′π |
2 |
π |
6 |
π |
12 |
kπ |
2 |
∴當(dāng)k′=1,k=0時(shí),
所以φ的最小值為
π |
4 |
故答案為:
π |
4 |
π |
3 |
π |
3 |
π |
3 |
π |
3 |
k′π |
2 |
π |
6 |
π |
3 |
π |
3 |
π |
3 |
π |
3 |
π |
2 |
π |
12 |
kπ |
2 |
k′π |
2 |
π |
6 |
π |
12 |
kπ |
2 |
π |
4 |
π |
4 |