因式分解練習題及答案
因式分解練習題及答案
進行兩次或兩次以上因式分解60道,
進行兩次或兩次以上因式分解60道,
數(shù)學人氣:893 ℃時間:2020-05-19 01:45:19
優(yōu)質(zhì)解答
1.a^4-4a+3 2.(a+x)^m+1*(b+x)^n-1-(a+x)^m*(b+x)^n 3.x^2+(a+1/a)xy+y^2 4.9a^2-4b^2+4bc-c^2 5.(c-a)^2-4(b-c)(a-b) 答案1.原式=a^4-a-3a+3=(a-1)(a^3+a^2+a-3) 2.[1-(a+x)^m][(b+x)^n-1] 3.(ax+y)(1/ax+y) 4.9a^2-4b^2+4bc-c^2=(3a)^2-(4b^2-4bc+c^2)=(3a)^2-(2b-c)^2=(3a+2b-c)(3a-2b+c) 5.(c-a)^2-4(b-c)(a-b) = (c-a)(c-a)-4(ab-b^2-ac+bc) =c^2-2ac+a^2-4ab+4b^2+4ac-4bc =c^2+a^2+4b^2-4ab+2ac-4bc =(a-2b)^2+c^2-(2c)(a-2b) =(a-2b-c)^2 1.x^2+2x-8 2.x^2+3x-10 3.x^2-x-20 4.x^2+x-6 5.2x^2+5x-3 6.6x^2+4x-2 7.x^2-2x-3 8.x^2+6x+8 9.x^2-x-12 10.x^2-7x+10 11.6x^2+x+2 12.4x^2+4x-3 解方程:(x的平方+5x-6)分之一=(x的平方+x+6)分之一 十字相乘法雖然比較難學,但是一旦學會了它,用它來解題,會給我們帶來很多方便,以下是我對十字相乘法提出的一些個人見解. 1、十字相乘法的方法:十字左邊相乘等于二次項系數(shù),右邊相乘等于常數(shù)項,交叉相乘再相加等于一次項系數(shù). 2、十字相乘法的用處:(1)用十字相乘法來分解因式.(2)用十字相乘法來解一元二次方程. 3、十字相乘法的優(yōu)點:用十字相乘法來解題的速度比較快,能夠節(jié)約時間,而且運用算量不大,不容易出錯. 4、十字相乘法的缺陷:1、有些題目用十字相乘法來解比較簡單,但并不是每一道題用十字相乘法來解都簡單.2、十字相乘法只適用于二次三項式類型的題目.3、十字相乘法比較難學. 5、十字相乘法解題實例: 1)、 用十字相乘法解一些簡單常見的題目 例1把m²+4m-12分解因式 分析:本題中常數(shù)項-12可以分為-1×12,-2×6,-3×4,-4×3,-6×2,-12×1當-12分成-2×6時,才符合本題 因為 1 -2 1 ╳ 6 所以m²+4m-12=(m-2)(m+6) 例2把5x²+6x-8分解因式 分析:本題中的5可分為1×5,-8可分為-1×8,-2×4,-4×2,-8×1.當二次項系數(shù)分為1×5,常數(shù)項分為-4×2時,才符合本題因為 1 2 5 ╳ -4 所以5x²+6x-8=(x+2)(5x-4) 例3解方程x²-8x+15=0 分析:把x²-8x+15看成關于x的一個二次三項式,則15可分成1×15,3×5.因為 1 -3 1 ╳ -5 所以原方程可變形(x-3)(x-5)=0 所以x1=3 x2=5 例4、解方程 6x²-5x-25=0 分析:把6x²-5x-25看成一個關于x的二次三項式,則6可以分為1×6,2×3,-25可以分成-1×25,-5×5,-25×1.因為 2 -5 3 ╳ 5 所以 原方程可變形成(2x-5)(3x+5)=0 所以 x1=5/2 x2=-5/3 2)、用十字相乘法解一些比較難的題目 例5把14x²-67xy+18y²分解因式 分析:把14x²-67xy+18y²看成是一個關于x的二次三項式,則14可分為1×14,2×7, 18y²可分為y.18y , 2y.9y , 3y.6y 解: 因為 2 -9y 7 ╳ -2y 所以 14x²-67xy+18y²= (2x-9y)(7x-2y) 例6 把10x²-27xy-28y²-x+25y-3分解因式 分析:在本題中,要把這個多項式整理成二次三項式的形式 解法一、10x²-27xy-28y²-x+25y-3 =10x²-(27y+1)x -(28y²-25y+3) 4y -3 7y ╳ -1 =10x²-(27y+1)x -(4y-3)(7y -1) =[2x -(7y -1)][5x +(4y -3)] 2 -(7y – 1) 5 ╳ 4y - 3 =(2x -7y +1)(5x +4y -3) 說明:在本題中先把28y²-25y+3用十字相乘法分解為(4y-3)(7y -1),再用十字相乘法把10x²-(27y+1)x -(4y-3)(7y -1)分解為[2x -(7y -1)][5x +(4y -3)] 解法二、10x²-27xy-28y²-x+25y-3 =(2x -7y)(5x +4y)-(x -25y)- 3 2 -7y =[(2x -7y)+1] [(5x -4y)-3] 5 ╳ 4y =(2x -7y+1)(5x -4y -3) 2 x -7y 1 5 x - 4y ╳ -3 說明:在本題中先把10x²-27xy-28y²用十字相乘法分解為(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)- 3用十字相乘法分解為[(2x -7y)+1] [(5x -4y)-3]. 例7:解關于x方程:x²- 3ax + 2a²–ab -b²=0 分析:2a²–ab-b²可以用十字相乘法進行因式分解 x²- 3ax + 2a²–ab -b²=0 x²- 3ax +(2a²–ab - b²)=0 x²- 3ax +(2a+b)(a-b)=0 1 -b 2 ╳ +b [x-(2a+b)][ x-(a-b)]=0 1 -(2a+b) 1 ╳ -(a-b) 所以 x1=2a+b x2=a-b 5-7(a+1)-6(a+1)^2 =-[6(a+1)^2+7(a+1)-5] =-[2(a+1)-1][3(a+1)+5] =-(2a+1)(3a+8); -4x^3 +6x^2 -2x =-2x(2x^2-3x+1) =-2x(x-1)(2x-1); 6(y-z)^2 +13(z-y)+6 =6(z-y)^2+13(z-y)+6 =[2(z-y)+3][3(z-y)+2] =(2z-2y+3)(3z-3y+2). 比如...x^2+6x-7這個式子 由于一次冪x前系數(shù)為6 所以,我們可以想到,7-1=6 那正好這個式子的常數(shù)項為-7 因此我們想到將-7看成7*(-1) 于是我們作十字相成 x +7 x -1 的到(x+7)·(x-1) 成功分解了因式 3ab^2-9a^2b^2+6a^3b^2 =3ab^2(1-3a+2a^2) =3ab^2(2a^2-3a+1) =3ab^2(2a-1)(a-1) 5-7(a+1)-6(a+1)^2 =-[6(a+1)^2+7(a+1)-5] =-[2(a+1)-1][3(a+1)+5] =-(2a+1)(3a+8); -4x^3 +6x^2 -2x =-2x(2x^2-3x+1) =-2x(x-1)(2x-1); 6(y-z)^2 +13(z-y)+6 =6(z-y)^2+13(z-y)+6 =[2(z-y)+3][3(z-y)+2] =(2z-2y+3)(3z-3y+2). 比如...x^2+6x-7這個式子 由于一次冪x前系數(shù)為6 所以,我們可以想到,7-1=6 那正好這個式子的常數(shù)項為-7 因此我們想到將-7看成7*(-1) 于是我們作十字相成 x +7 x -1 的到(x+7)·(x-1) 成功分解了因式 3ab^2-9a^2b^2+6a^3b^2 =3ab^2(1-3a+2a^2) =3ab^2(2a^2-3a+1) =3ab^2(2a-1)(a-1) x^2+3x-40 =x^2+3x+2.25-42.25 =(x+1.5)^2-(6.5)^2 =(x+8)(x-5). ⑹十字相乘法 這種方法有兩種情況. ①x^2+(p+q)x+pq型的式子的因式分解 這類二次三項式的特點是:二次項的系數(shù)是1;常數(shù)項是兩個數(shù)的積;一次項系數(shù)是常數(shù)項的兩個因數(shù)的和.因此,可以直接將某些二次項的系數(shù)是1的二次三項式因式分x^2+(p+q)x+pq=(x+p)(x+q) . ②kx^2+mx+n型的式子的因式分解 如果如果有k=ac,n=bd,且有ad+bc=m時,那么kx^2+mx+n=(ax+b)(cx+d). 圖示如下: a b × c d 例如:因為 1 -3 × 7 2 -3×7=-21,1×2=2,且2-21=-19, 所以7x^2-19x-6=(7x+2)(x-3). 十字相乘法口訣:首尾分解,交叉相乘,求和湊中 ⑶分組分解法 分組分解是解方程的一種簡潔的方法,我們來學習這個知識. 能分組分解的方程有四項或大于四項,一般的分組分解有兩種形式:二二分法,三一分法. 比如: ax+ay+bx+by =a(x+y)+b(x+y) =(a+b)(x+y) 我們把ax和ay分一組,bx和by分一組,利用乘法分配律,兩兩相配,立即解除了困難. 同樣,這道題也可以這樣做. ax+ay+bx+by =x(a+b)+y(a+b) =(a+b)(x+y) 幾道例題: 1. 5ax+5bx+3ay+3by 解法:=5x(a+b)+3y(a+b) =(5x+3y)(a+b) 說明:系數(shù)不一樣一樣可以做分組分解,和上面一樣,把5ax和5bx看成整體,把3ay和3by看成一個整體,利用乘法分配律輕松解出. 2. x3-x2+x-1 解法:=(x3-x2)+(x-1) =x2(x-1)+(x-1) =(x-1)(x2+1) 利用二二分法,提公因式法提出x2,然后相合輕松解決. 3. x2-x-y2-y 解法:=(x2-y2)-(x+y) =(x+y)(x-y)-(x+y) =(x+y)(x-y+1) 利用二二分法,再利用公式法a2-b2=(a+b)(a-b),然后相合解決. 758²—258² =(758+258)(758-258)=1016*500=508000這是復制黏貼的吧,我需要的是兩部以上的因式分解計算題,并且?guī)洗鸢浮U垎栍袉幔?div style="margin-top:20px">
我來回答
類似推薦
- 因式分解練習題及答案,
- SOS!求求你們了!
- 因式分解練習題及答案
- 因式分解的簡單練習題及答案
- 因式分解,整式的乘法的練習題,各十道,
- 電場力是怎么產(chǎn)生的
- ( )are going to have a picnic?This afternoon after school.
- 什么是二次函數(shù)、一元二次方程和一元二次不等式的聯(lián)系和區(qū)別?
- CaCl2怎么不與ZnCO3反應生成ZnCl2
- 有一個運算程序,可以使a⊕b=n(n為常數(shù))時,得(a+1)⊕b=n+1,a⊕(b+1)=n-2.現(xiàn)在已知1⊕1=2,那么2008⊕2008=_.
- 求一幅紅外線接收電路圖及紅外線發(fā)射電路圖.(越多越好)謝謝
- 等差數(shù)列的前四項之和是124,最后四項之和是156,且各項和是210,求項數(shù).