代入上式,得Sn-1Sn+2Sn+1=0.(*)
S1=a1=-
2 |
3 |
∵Sn+
1 |
Sn |
,S2+
1 |
S2 |
∴
1 |
S2 |
2 |
3 |
∴S2=-
3 |
4 |
同理可求得 S3=-
4 |
5 |
5 |
6 |
猜想Sn =-
n+1 |
n+2 |
①當(dāng)n=1時(shí),S1=a1=-
2 |
3 |
②假設(shè)當(dāng)n=k時(shí)猜想成立,即SK=-
K+1 |
K+2 |
1 |
Sn |
1 |
SK+1 |
∴SK+1+
1 |
SK+1 |
1 |
SK+1 |
K+1 |
K+2 |
?K?3 |
K+2 |
∴SK+1=-
K+2 |
K+3 |
綜合①②可得,猜想對(duì)任意正整數(shù)都成立,即 Sn =-
n+1 |
n+2 |