(x-m-3)^2+(y-1+4m^2)^2=(m+3)^2+(1-4m^2)^2-16m^4-9
(x-m-3)^2+(y-1+4m^2)^2=-7m^2+6m+1
(x-m-3)^2+(y-1+4m^2)^2=-(7m+1)(m-1)
表示圓的話,則半徑r>0
因此有-(7m+1)(m-1)>0
得-1/7
當(dāng)m=3/7時(shí),r^2最大,為16/7
即圓面積最大值=16π/7
3)記圓心為(x,y)
則x=m+3
y=1-4m^2
將m=x-3代入后式,得:y=1-4(x-3)^2=-4x^2+24x-35
因?yàn)橛?/7