得
|
解得
|
∴拋物線的解析式為y=x2+2x-3;
(2)過點P作PD⊥y軸,垂足為D,
令y=0,得x2+2x-3=0,
解得x1=-3,x2=1,
∴點C(-3,0),
∵B(0,-3),
∴△BOC為等腰直角三角形,
∴∠CBO=45°,
∵PB⊥BC,
∴∠PBD=45°,
∴PD=BD.
∴可設(shè)點P(x,-3+x),
則有-3+x=x2+2x-3,
∴x=-1,
∴P點坐標為(-1,-4);
(3)由(2)知,BC⊥BP,
(i)當BP為直角梯形一底時,由圖象可知點Q不可能在拋物線上;
(ii)當BC為直角梯形一底,BP為直角梯形腰時,
∵B(0,-3),C(-3,0),
∴直線BC的解析式為y=-x-3,
∵直線PQ∥BC,
∴直線PQ的解析式為y=-x+b,
又P(-1,-4),
∴PQ的解析式為:y=-x-5,
聯(lián)立方程組得
|
解得x1=-1,x2=-2,
∴x=-2,y=-3,
即點Q(-2,-3),
∴符合條件的點Q的坐標為(-2,-3).