這題顯然可以不用隱函數(shù)做.
x²y² + x³y - 1 =0
y = [-x³ ± √(x^6 + x²)]/(2x²) = -x/2 ± [√(x² + 1/x²)]/2
其余見圖.
(1)取+號
y = -x/2 + [√(x² + 1/x²)]/2
y' = -1/2 + (1/2)(1/2)(2x - 2/x³)/√(x² + 1/x²) = (1/2)[x - 1/x³-√(x² + 1/x²)/[√(x² + 1/x²) = 0
x - 1/x³ = √(x² + 1/x²)
3x^4 = 1
x = ± 1/3^(1/4)
由圖,這里取x = -1/3^(1/4) (不知道是不是有更簡單的辦法來判定)
y = 3/[2*3^(1/4)] (極小值)
(2) 取-號
情況與(1)類似,x = ± 1/3^(1/4)
但這里取 x = 1/3^(1/4)
y = -3/[2*3^(1/4)] (極大值)