同角三角函數(shù)間的基本關(guān)系式:
·平方關(guān)系:
sin^2α+cos^2α=1
1+tan^2α=sec^2α
1+cot^2α=csc^2α
·積的關(guān)系:
sinα=tanα×cosα
cosα=cotα×sinα
tanα=sinα×secα
cotα=cosα×cscα
secα=tanα×cscα
cscα=secα×cotα
·倒數(shù)關(guān)系:
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
商的關(guān)系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
直角三角形ABC中,
角A的正弦值就等于角A的對(duì)邊比斜邊,
余弦等于角A的鄰邊比斜邊
正切等于對(duì)邊比鄰邊,
·[1]三角函數(shù)恒等變形公式
·兩角和與差的三角函數(shù):
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
·三角和的三角函數(shù):
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
·輔助角公式:
Asinα+Bcosα=(A²+B²)^(1/2)sin(α+t),其中
sint=B/(A²+B²)^(1/2)
cost=A/(A²+B²)^(1/2)
tant=B/A
Asinα-Bcosα=(A²+B²)^(1/2)cos(α-t),tant=A/B
·倍角公式:
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos²(α)-sin²(α)=2cos²(α)-1=1-2sin²(α)
tan(2α)=2tanα/[1-tan²(α)]
·三倍角公式:
sin(3α)=3sinα-4sin³(α)=4sinα·sin(60+α)sin(60-α)
cos(3α)=4cos³(α)-3cosα=4cosα·cos(60+α)cos(60-α)
tan(3α)=tan a · tan(π/3+a)· tan(π/3-a)
·半角公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
·降冪公式
sin²(α)=(1-cos(2α))/2=versin(2α)/2
cos²(α)=(1+cos(2α))/2=covers(2α)/2
tan²(α)=(1-cos(2α))/(1+cos(2α))
·萬(wàn)能公式:
sinα=2tan(α/2)/[1+tan²(α/2)]
cosα=[1-tan²(α/2)]/[1+tan²(α/2)]
tanα=2tan(α/2)/[1-tan²(α/2)]
·積化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
·和差化積公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
·推導(dǎo)公式
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos²α
1-cos2α=2sin²α
1+sinα=(sinα/2+cosα/2)²
·其他:
sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及
sin²(α)+sin²(α-2π/3)+sin²(α+2π/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
cosx+cos2x+...+cosnx= [sin(n+1)x+sinnx-sinx]/2sinx
證明:
左邊=2sinx(cosx+cos2x+...+cosnx)/2sinx
=[sin2x-0+sin3x-sinx+sin4x-sin2x+...+ sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx (積化和差)
=[sin(n+1)x+sinnx-sinx]/2sinx=右邊
等式得證
sinx+sin2x+...+sinnx= - [cos(n+1)x+cosnx-cosx-1]/2sinx
證明:
左邊=-2sinx[sinx+sin2x+...+sinnx]/(-2sinx)
=[cos2x-cos0+cos3x-cosx+...+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx)
=- [cos(n+1)x+cosnx-cosx-1]/2sinx=右邊
等式得證
[編輯本段]三角函數(shù)的誘導(dǎo)公式
公式一:
設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α與 -α的三角函數(shù)值之間的關(guān)系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
[編輯本段]正余弦定理
正弦定理是指在三角形中,各邊和它所對(duì)的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R .(其中R為外接圓的半徑)
余弦定理是指三角形中任何一邊的平方等于其它兩邊的平方和減去這兩邊與它們夾角的余弦的積的2倍,即a^2=b^2+c^2-2bc cosA
角A的對(duì)邊于斜邊的比叫做角A的正弦,記作sinA,即sinA=角A的對(duì)邊/斜邊
斜邊與鄰邊夾角a
sin=y/r
無(wú)論y>x或y≤x
無(wú)論a多大多小可以任意大小
正弦的最大值為1 最小值為-1
三角恒等式
對(duì)于任意非直角三角形中,如三角形ABC,總有tanA+tanB+tanC=tanAtanBtanC
證明:
已知(A+B)=(π-C)
所以tan(A+B)=tan(π-C)
則(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)
整理可得
tanA+tanB+tanC=tanAtanBtanC
類似地,我們同樣也可以求證:當(dāng)α+β+γ=nπ(n∈Z)時(shí),總有tanα+tanβ+tanγ=tanαtanβtanγ
[編輯本段]部分高等內(nèi)容
·高等代數(shù)中三角函數(shù)的指數(shù)表示(由泰勒級(jí)數(shù)易得):
sinx=[e^(ix)-e^(-ix)]/(2i)
cosx=[e^(ix)+e^(-ix)]/2
tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]
泰勒展開有無(wú)窮級(jí)數(shù),e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…
此時(shí)三角函數(shù)定義域已推廣至整個(gè)復(fù)數(shù)集.
·三角函數(shù)作為微分方程的
對(duì)于微分方程組 y=-y'';y=y'''',有通解Q,可證明
Q=Asinx+Bcosx,因此也可以從此出發(fā)定義三角函數(shù).
補(bǔ)充:由相應(yīng)的指數(shù)表示我們可以定義一種類似的函數(shù)——雙曲函數(shù),其擁有很多與三角函數(shù)的類似的性質(zhì),二者相映成趣
三角函數(shù)及解三角形的有關(guān)公式
三角函數(shù)及解三角形的有關(guān)公式
要全面詳細(xì)的
要全面詳細(xì)的
數(shù)學(xué)人氣:674 ℃時(shí)間:2020-03-19 16:51:12
優(yōu)質(zhì)解答
我來(lái)回答
類似推薦
- 三角函數(shù)解三角形(需要詳解啊~)
- 2道高中有關(guān)三角函數(shù)、解三角形的問(wèn)題
- 三角函數(shù)與解三角形
- 三角函數(shù)解三角形問(wèn)題
- 三角函數(shù)解三角形面積
- 關(guān)于鏡面反射和漫反射,下列不正確的是
- 在夏末,秋初的晴朗夜晚,你到空曠的場(chǎng)地上去遙望星空,就會(huì)看到一條淡淡的光帶從東北向南橫貫天穹
- 求五言詩(shī) 押ao韻
- N2+3H2生成2NH3
- "我看見了他一夜的工作.他每個(gè)夜晚都是這樣工作的.你們看見過(guò)這樣的總理嗎?"這句話的修辭手法
- 若X-Y+2的絕對(duì)值與X+Y-1開算數(shù)平方根護(hù)衛(wèi)相反數(shù),求22X+2Y開立方根的值.
- 以make為例各造三個(gè)一般現(xiàn)在時(shí),一般過(guò)去式的句子(肯定句,疑問(wèn)句,否定句)急~
猜你喜歡
- 1下列反應(yīng)是氧化還原反應(yīng)且水作還原劑的是( ?。?A.CaO+H2O=Ca(OH)2 B.C+H2O(g)═CO+H2 C.2F2+2H2O=4HF+O2 D.3NO2+H2O=2HNO3+NO
- 2關(guān)于亞洲人口問(wèn)題說(shuō)法,正確的是
- 3利用相似三角形的有關(guān)知識(shí)測(cè)量某物體的高度
- 4已知二次函數(shù)y=x2+ax-2的對(duì)稱軸方程為x=1,則函數(shù)的頂點(diǎn)坐標(biāo)要求過(guò)程
- 51、3、6、10、15、21為什么叫做三角形數(shù)
- 6求關(guān)于風(fēng)的作文,300字就可以了
- 7這真是太好了,英文怎么說(shuō)?
- 8英語(yǔ)單詞中重音讀法
- 9有一塊平行四邊形草地,底長(zhǎng)25米,高是底的一半.如果每平方米可供3只羊吃一天.這塊草地可供多少只羊吃一天?
- 10如圖所示,均勻細(xì)桿AB質(zhì)量為M,A端裝有轉(zhuǎn)軸,B端連接細(xì)線通過(guò)滑輪和質(zhì)量為m的重物C相連,若桿AB呈水平,細(xì)線與水平方向夾角為θ 時(shí)恰能保持平衡,則桿對(duì)軸A有作用力大小下面表達(dá)式中正
- 11又是初一英語(yǔ) 填空題
- 12快車從甲城駛往乙城要20小時(shí),慢車從乙城到甲城要30小時(shí),現(xiàn)兩車同時(shí)從兩地相向開出,