附加題 已知:x-y=a,z-y=10,求x2+y2+z2-xy-yz-zx的最小值.
附加題
已知:x-y=a,z-y=10,求x2+y2+z2-xy-yz-zx的最小值.
數(shù)學人氣:871 ℃時間:2020-02-06 05:16:11
優(yōu)質解答
∵x-y=a,z-y=10,
∴x-a=a-10,
原式=
(2x
2+2y
2+2z
2-2xy-2zx-2yz)
=
[(x-y)
2+(y-z)
2+(x-z)
2]
=
[a
2+100+(a-10)
2]
=
(2a
2-20a+200)
=a
2-10a+100
=(a-5)
2+75;
所以當a=5時,原式最小值為75
我來回答
類似推薦