精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 關(guān)于勾股定理的小故事?

    關(guān)于勾股定理的小故事?
    語文人氣:151 ℃時(shí)間:2020-05-15 13:03:07
    優(yōu)質(zhì)解答
    勾股的發(fā)現(xiàn)
    在1876年一個(gè)周末的傍晚,在美國首都華盛頓的郊外,有一位中年人正在散步,欣賞黃昏的美景,他就是當(dāng)時(shí)美國俄亥俄州共和黨議員伽菲爾德.他走著走著,突然發(fā)現(xiàn)附近的一個(gè)小石凳上,有兩個(gè)小孩正在聚精會(huì)地談?wù)撝裁?時(shí)而大聲爭論,時(shí)而小聲探討.由于好奇心驅(qū)使伽菲爾德循 聲向兩個(gè)小孩走去,想搞清楚兩個(gè)小孩到底在干什么.只見一個(gè)小男孩正俯著身子用樹枝在地上畫著一個(gè)直角三角形.于是伽菲爾德便問他們?cè)诟?什么?
    只見那個(gè)小男孩頭也不抬地說:“請(qǐng)問先生,如果直角三角形的兩條直角邊分別為3和4,那么斜邊長為多少呢?”伽菲爾德答到:“是5呀.”小男孩又問道:“如果兩條直角邊分別為5和7,那么這個(gè)直角三角形的斜邊長又是多少?”伽菲爾德不加思索地回答到:“那斜邊的平方一定等于5的平方加上7的平方.”小男孩又說道:“先生,你能說出其中的道理嗎?”伽菲爾德一時(shí)語塞,無法解釋了,心理很不是滋味.
    于是伽菲爾德不再散步,立即回家,潛心探討小男孩給他留下的難題.他經(jīng)過反復(fù)的思考與演算,終于弄清楚了其中的道理,并給出了簡潔的證明方法.
    1876年4月1日,伽菲爾德在《新英格蘭教育日志》上發(fā)表了他對(duì)勾股定理的這一證法.
    1881年,伽菲爾德就任美國第二十任總統(tǒng).后來,
    勾股的證明
    人們?yōu)榱思o(jì)念他對(duì)勾股定理直觀、簡捷、易懂、明了的證明,就把這一證法稱為“總統(tǒng)”證法.
    勾股定理同時(shí)也是數(shù)學(xué)中應(yīng)用最廣泛的定理之一.例如從勾股定理出發(fā)逐漸發(fā)展了開平方、開立方;用勾股定理求圓周率.據(jù)稱金字塔底座的四個(gè)直角就是應(yīng)用這一關(guān)系來確定的.至今在建筑工地上,還在用它來放線,進(jìn)行“歸方”,即放“成直角”的線.
    正因?yàn)檫@樣,人們對(duì)這個(gè)定理的備加推崇便不足為奇了.1955年希臘發(fā)行了一張郵票,圖案是由三個(gè)棋盤排列而成.這張郵票是紀(jì)念二千五百年前希臘的一個(gè)學(xué)派和宗教團(tuán)體 —— 畢達(dá)哥拉斯學(xué)派,它的成立以及在文化上的貢獻(xiàn).郵票上的圖案是對(duì)勾股定理的說明.希臘郵票上所示的證明方法,最初記載在歐幾里得的《幾何原本》里.
    尼加拉瓜在1971年發(fā)行了一套十枚的紀(jì)念郵票,主題是世界上“十個(gè)最重要的數(shù)學(xué)公式”,其中之一便是勾股定理.
    2002年的世界數(shù)學(xué)家大會(huì)在中國北京舉行,這是21世紀(jì)數(shù)學(xué)家的第一次大聚會(huì),這次大會(huì)的會(huì)標(biāo)就選定了驗(yàn)證勾股定理的“弦圖”作為中央圖案,可以說是充分表現(xiàn)了我國古代數(shù)學(xué)的成就,也充分弘揚(yáng)了我國古代的數(shù)學(xué)文化,另外,我國經(jīng)過努力終于獲得了2002年數(shù)學(xué)家大會(huì)的主辦權(quán),這也是國際數(shù)學(xué)界對(duì)我國數(shù)學(xué)發(fā)展的充分肯定.
    今天,世界上幾乎沒有人不知道七巧板和七巧圖,它在國外被稱為“唐圖”(Tangram),意思是中國圖(不是唐代發(fā)明的圖).七巧板的歷史也許應(yīng)該追溯到我國先秦的古籍《周髀算經(jīng)》,其中有正方形切割術(shù),并由之證明了勾股定理.而當(dāng)時(shí)是將大正方形切割成四個(gè)同樣的三角形和一個(gè)小正方形,即弦圖,還不是七巧板.現(xiàn)在的七巧板是經(jīng)過一段歷史演變過程的.
    勾股趣事
    甚至還有人提出過這樣的建議:在地球上建造一個(gè)大型裝置,以便向可能會(huì)來訪的“天外來客”表明地球上存在有智慧的生命,最適當(dāng)?shù)难b置就是一個(gè)象征勾股定理的巨大圖形,可以設(shè)在撒哈拉大沙漠、蘇聯(lián)的西伯利亞或其他廣闊的荒原上,因?yàn)橐磺杏兄R(shí)的生物都必定知道這個(gè)非凡的定理,所以用它來做標(biāo)志最容易被外來者所識(shí)別!
    有趣的是:除了三元二次方程x2 + y2 =z2(其中x、y、z都是未知數(shù))有正整數(shù)解以外,其他的三元n次方程xn + yn =zn(n為已知正整數(shù),且n>2)都不可能有正整數(shù)解.這一定理叫做費(fèi)爾馬大定理(費(fèi)爾馬是17世紀(jì)法國數(shù)學(xué)家).
    我來回答
    類似推薦
    請(qǐng)使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點(diǎn),以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版