勾股定理趣事
學(xué)過幾何的人都知道勾股定理.它是幾何中一個比較重要的定理,應(yīng)用十分廣泛.迄今為止,關(guān)于勾股定理的證明方法已有400多種.其中,美國第二十任總統(tǒng)伽菲爾德的證法在數(shù)學(xué)史上被傳為佳話.
總統(tǒng)為什么會想到去證明勾股定理呢?難道他是數(shù)學(xué)家或數(shù)學(xué)愛好者?答案是否定的.事情的經(jīng)過是這樣的;
勾股的發(fā)現(xiàn)
在1876年一個周末的傍晚,在美國首都華盛頓的郊外,有一位中年人正 在散步,欣賞黃昏的美景,他就是當(dāng)時(shí)美國俄亥俄州共和黨議員伽菲爾德.他走著走著,突然發(fā)現(xiàn)附近的一個小石凳上,有兩個小孩正在聚精會地 談?wù)撝裁?時(shí)而大聲爭論,時(shí)而小聲探討.由于好奇心驅(qū)使伽菲爾德循 聲向兩個小孩走去,想搞清楚兩個小孩到底在干什么.只見一個小男孩正 俯著身子用樹枝在地上畫著一個直角三角形.于是伽菲爾德便問他們在干 什么?
只見那個小男孩頭也不抬地說:“請問先生,如果直角三角形的兩條直角邊分別為3和4,那么斜邊長為多少呢?”伽菲爾德答到:“是5呀.”小男孩又問道:“如果兩條直角邊分別為5和7,那么這個直角三角形的斜邊長又是多少?”伽菲爾德不加思索地回答到:“那斜邊的平方一定等于5的平方加上7的平方.”小男孩又說道:“先生,你能說出其中的道理嗎?”伽菲爾德一時(shí)語塞,無法解釋了,心理很不是滋味.
于是伽菲爾德不再散步,立即回家,潛心探討小男孩給他留下的難題.他經(jīng)過反復(fù)的思考與演算,終于弄清楚了其中的道理,并給出了簡潔的證明方法.
1876年4月1日,伽菲爾德在《新英格蘭教育日志》上發(fā)表了他對勾股定理的這一證法.
1881年,伽菲爾德就任美國第二十任總統(tǒng).后來,
勾股的證明
人們?yōu)榱思o(jì)念他對勾股定理直觀、簡捷、易懂、明了的證明,就把這一證法稱為“總統(tǒng)”證法.
勾股定理同時(shí)也是數(shù)學(xué)中應(yīng)用最廣泛的定理之一.例如從勾股定理出發(fā)逐漸發(fā)展了開平方、開立方;用勾股定理求圓周率.據(jù)稱金字塔底座的四個直角就是應(yīng)用這一關(guān)系來確定的.至今在建筑工地上,還在用它來放線,進(jìn)行“歸方”,即放“成直角”的線.
正因?yàn)檫@樣,人們對這個定理的備加推崇便不足為奇了.1955年希臘發(fā)行了一張郵票,圖案是由三個棋盤排列而成.這張郵票是紀(jì)念二千五百年前希臘的一個學(xué)派和宗教團(tuán)體 —— 畢達(dá)哥拉斯學(xué)派,它的成立以及在文化上的貢獻(xiàn).郵票上的圖案是對勾股定理的說明.希臘郵票上所示的證明方法,最初記載在歐幾里得的《幾何原本》里.
尼加拉瓜在1971年發(fā)行了一套十枚的紀(jì)念郵票,主題是世界上“十個最重要的數(shù)學(xué)公式”,其中之一便是勾股定理.
2002年的世界數(shù)學(xué)家大會在中國北京舉行,這是21世紀(jì)數(shù)學(xué)家的第一次大聚會,這次大會的會標(biāo)就選定了驗(yàn)證勾股定理的“弦圖”作為中央圖案,可以說是充分表現(xiàn)了我國古代數(shù)學(xué)的成就,也充分弘揚(yáng)了我國古代的數(shù)學(xué)文化,另外,我國經(jīng)過努力終于獲得了2002年數(shù)學(xué)家大會的主辦權(quán),這也是國際數(shù)學(xué)界對我國數(shù)學(xué)發(fā)展的充分肯定.
今天,世界上幾乎沒有人不知道七巧板和七巧圖,它在國外被稱為“唐圖”(Tangram),意思是中國圖(不是唐代發(fā)明的圖).七巧板的歷史也許應(yīng)該追溯到我國先秦的古籍《周髀算經(jīng)》,其中有正方形切割術(shù),并由之證明了勾股定理.而當(dāng)時(shí)是將大正方形切割成四個同樣的三角形和一個小正方形,即弦圖,還不是七巧板.現(xiàn)在的七巧板是經(jīng)過一段歷史演變過程的.
勾股趣事
甚至還有人提出過這樣的建議:在地球上建造一個大型裝置,以便向可能會來訪的“天外來客”表明地球上存在有智慧的生命,最適當(dāng)?shù)难b置就是一個象征勾股定理的巨大圖形,可以設(shè)在撒哈拉大沙漠、蘇聯(lián)的西伯利亞或其他廣闊的荒原上,因?yàn)橐磺杏兄R的生物都必定知道這個非凡的定理,所以用它來做標(biāo)志最容易被外來者所識別!
有趣的是:除了三元二次方程x2 + y2 =z2(其中x、y、z都是未知數(shù))有正整數(shù)解以外,其他的三元n次方程xn + yn =zn(n為已知正整數(shù),且n>2)都不可能有正整數(shù)解.這一定理叫做費(fèi)爾馬大定理(費(fèi)爾馬是17世紀(jì)法國數(shù)學(xué)家).
勾股定理的相關(guān)故事
勾股定理的相關(guān)故事
一定要是事實(shí)!
一定要是事實(shí)!
語文人氣:236 ℃時(shí)間:2020-05-24 00:59:44
優(yōu)質(zhì)解答
我來回答
類似推薦
猜你喜歡
- 1如何理解矛盾的兩種基本屬性在事物發(fā)展中的作用
- 2以《冬天來了 ,春天還會遠(yuǎn)嗎?》為題 主要是寫不怕困難,就離成功不遠(yuǎn)了
- 3英語17.-Are you going to have a holiday this year?
- 4橢圓C方程為(x^2)/8 +(Y^2)/4=1,若直線y=x+m與橢圓C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)M關(guān)于直線y=x+1的對稱點(diǎn)在圓X^2+Y^2=1上,求m的值
- 5用愿意.就.,愿意.就.造句
- 6下列說法中屬于控制噪音聲源的是 ( )屬于阻擋噪音傳播的措施是( )屬于防止噪聲進(jìn)入人耳的措施是
- 7仿寫句子,用上草長鶯飛
- 8Here is a ticket to the movie for you.You are____(luck).填什么?為什么添這個?
- 9某元素的一種粒子的結(jié)構(gòu)示意圖為,下列說法錯誤的是( ) A.該粒子屬于原子 B.該元素在化合物中顯+1價(jià) C.該元素的一個離子含有11個電子 D.該元素的原子在化學(xué)反應(yīng)中容易失去電子
- 10中國地球有多大?
- 11幾個關(guān)于餐廳英語用法的問題
- 12圓圓的爸爸去銀行取款,第一次取了存款的一半還多5元,第二次取了余下的一半還少10元,還剩135元,一共多少