精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 定積分的兩條題目?計算啊

    定積分的兩條題目?計算啊
    區(qū)間是-0.5到0.5 【(x*x)/(根號(1-x*x))】dx
    區(qū)間是0到2 [1/(根號(1+2*x*x))]dx
    以上2個題用定積分的換元法做
    數(shù)學人氣:729 ℃時間:2020-05-04 09:48:49
    優(yōu)質解答
    ∫[x^2/√(1-x^2)]dx,[-0.5,0.5]
    令x=sint,積分范圍為[-π/6,π/6]
    √(1-x^2)=cost,dx=costdt
    ∫[x^2/√(1-x^2)]dx,[-0.5,0.5]
    =∫(sint)^2dt,[-π/6,π/6]
    =∫[1-cos2t]/2dt,[-π/6,π/6]
    =t/2-sin2t/4,[-π/6,π/6]
    =π/12-√3/8-(-π/12+√3/8)
    =π/6-√3/4
    ∫dx/√(1+2x^2),[0,2]
    令√2*x=tant,則積分范圍為[0,arctan(2√2)]
    √(1+2x^2)=sect,dx=(1/√2)(sect)^2dt
    ∫dx/√(1+2x^2),[0,2]
    =(1/√2)∫sectdt,[0,arctan(2√2)]
    =(1/√2)∫dt/cost,[0,arctan(2√2)]
    =(1/√2)∫costdt/[1-(sint)^2],[0,arctan(2√2)]
    =(1/√2)∫dsint/[1-(sint)^2],[0,arctan(2√2)]
    =(1/2√2)∫[1/(1-sint)+1/(1+sint)]dsint,[0,arctan(2√2)]
    =(1/2√2)∫[dln[(1+sint)/(1-sint)],[0,arctan(2√2)]
    =(1/2√2)ln[(1+sint)/(1-sint)],[0,arctan(2√2)]
    =(1/2√2)ln[(1+sinarctan2√2)/(1-sinarctan2√2)]
    =(1/2√2)ln[(1+2√2/3)/(1-2√2/3)]
    =(1/√2)ln(3+2√2)
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機版