精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 如圖,已知正六邊形ABCDEF的邊長為1,M,N分別是AF和CD的中點(diǎn),P是MN上的動(dòng)點(diǎn).求PA+PB的最小值.

    如圖,已知正六邊形ABCDEF的邊長為1,M,N分別是AF和CD的中點(diǎn),P是MN上的動(dòng)點(diǎn).求PA+PB的最小值.
    數(shù)學(xué)人氣:557 ℃時(shí)間:2020-05-06 08:08:54
    優(yōu)質(zhì)解答

     
    連接BF,與MN的交點(diǎn)即是使“PA+PB最小”的P點(diǎn).此時(shí)AP+BP=FP+BP=BF=√(1²+1²-2·1·1·cos120°)(余弦定理) =√3
    證明:任取異于點(diǎn)P的點(diǎn)P',連接AP'、BP',則此時(shí)P'A+P'B=P'F+P'B>BF(三角形兩邊之和大于第三邊)=AP+BP,故P點(diǎn)是使PA+PB最小的點(diǎn).
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點(diǎn),以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版