∴∠DFE=90°-∠DEF=45°.
∴∠DFE=∠DEF.
∴DE=DF.
又∵AD=DC,
∴AE=FC.
∵AB是圓B的半徑,AD⊥AB,
∴AD切圓B于點(diǎn)A.
同理:CD切圓B于點(diǎn)C.
又∵EF切圓B于點(diǎn)G,
∴AE=EG,F(xiàn)C=FG.
∴EG=FG,即G為線段EF的中點(diǎn).
(2)根據(jù)(1)中的線段之間的關(guān)系,得EF=x+y,DE=1-x,DF=1-y,
根據(jù)勾股定理,得:
(x+y)2=(1-x)2+(1-y)2
∴y=
1?x |
1+x |
(3)當(dāng)EF=
5 |
6 |
即x+
1?x |
1+x |
5 |
6 |
解得x1=
1 |
3 |
1 |
2 |
經(jīng)檢驗(yàn)x1=
1 |
3 |
1 |
2 |
①當(dāng)AE=
1 |
2 |
證明:設(shè)直線EF交線段DD1于點(diǎn)H,由題意,得:
△EDF≌△ED1F,EF⊥DD1且DH=D1H.
∵AE=
1 |
2 |
∴AE=ED.
∴EH∥AD1,∠AD1D=∠EHD=90°.
又∵∠ED1F=∠EDF=90°,
![](http://hiphotos.baidu.com/zhidao/pic/item/08f790529822720e20fec74878cb0a46f21fab4b.jpg)
∴∠FD1D=∠AD1D.
∴D1F∥AD,
∴∠ADD1=∠DD1F=∠EFD=45°,
∴△ED1F∽△AD1D.
②當(dāng)AE=
1 |
3 |