求證:AC2+BD2=AB2+BC2+CD2+AD2
證明:作AE⊥BC于點E,DF⊥BC交BC的延長線于F,
則∠AEB=∠DFC=90°.
∵四邊形ABCD是平行四邊形,
![](http://hiphotos.baidu.com/zhidao/pic/item/d1160924ab18972be50e997be5cd7b899e510a4e.jpg)
∴AB=DC,AB∥CD,
∴∠ABE=∠DCF,
∴△ABE≌△DCF,
∴AE=DF,BE=CF.
在Rt△ACE和Rt△BDF中,由勾股定理,得
AC2=AE2+EC2=AE2+(BC-BE)2,
BD2=DF2+BF2=DF2+(BC+CF)2=AE2+(BC+BE)2,
∴AC2+BD2=2AE2+2BC2+2BE2=2(AE2+BE2)+2BC2.
又∵AE2+BE2=AB2,
即:AC2+BD2=2(AB2+BC2).
∵AB=CD,AD=BC,
∴AC2+BD2=AB2+BC2+CD2+AD2