已知二次函數(shù)y=f(x)的圖象經(jīng)過坐標(biāo)原點(diǎn),其到函數(shù)為f’(x)=6x-2.數(shù)列an的n項(xiàng)和為Sn,點(diǎn)(n,Sn)(n屬于N*)均在函數(shù)y=f(x)的圖像上
1.求數(shù)列{an}的通項(xiàng)公式
2.設(shè)bn=3/[an*a(n+1)],Tn是數(shù)列bn的前n項(xiàng)和,求使得Tn
由導(dǎo)數(shù)可以計(jì)算出f(x)=3x^2-2x+AA為系數(shù),因?yàn)檫^原點(diǎn)(0,0),則A=0
即f(x)=3x^2-2x.
點(diǎn)(n,Sn)(n屬于N*)均在函數(shù)y=f(x)的圖像上,則3n^2-2n=Sn
an=Sn-S(n-1)=3n^2-2n-3(n-1)^2+2(n-1)=6n-5
即an=6n-5
bn=3/[an*a(n+1)]=3/[(6n-5)(6n+1)]=(1/2)[1/(6n-5)-1/(6n+1)]
則Tn=(1/2)[1-1/(6n+1)]=3n/(6n+1),n趨于無(wú)窮時(shí),Tn極限值為1/2,
使得Tn
補(bǔ):我是按照下標(biāo)計(jì)算的