AB |
BC |
AD |
DC |
得
AB+AD |
BC+DC |
AD |
DC |
30 |
15 |
2 |
1 |
設AD=2k(k>0),DC=k,
則AB=AC=3k,AB+AD=5k=30,
解得k=6,
∴AB=18.
(2)當AB+AD=15時,由
AB |
BC |
AD |
DC |
得
AD |
DC |
1 |
2 |
設AD=k(k>0),DC=2k,
則AB=AC=3k,AB+AD=4k=15,
解得k=
15 |
4 |
∴AB=
45 |
4 |
都符合三角形的三邊關系.
∴AB=18或
45 |
4 |
AB |
BC |
AD |
DC |
AB |
BC |
AD |
DC |
AB+AD |
BC+DC |
AD |
DC |
30 |
15 |
2 |
1 |
AB |
BC |
AD |
DC |
AD |
DC |
1 |
2 |
15 |
4 |
45 |
4 |
45 |
4 |