精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 令bn=(2^(n-1)+1)/((3n-2)an)數(shù)列{bn^2}的前n項(xiàng)和為tn,證明對(duì)于任意的n∈N+,都有tn

    令bn=(2^(n-1)+1)/((3n-2)an)數(shù)列{bn^2}的前n項(xiàng)和為tn,證明對(duì)于任意的n∈N+,都有tn
    數(shù)學(xué)人氣:851 ℃時(shí)間:2020-04-05 06:24:35
    優(yōu)質(zhì)解答
    b(1) = 2/4 = 1/2,
    t(1) = 1/4 = 3/12 < 5/12.
    n>=2時(shí),b(n)= [2^(n-1)+1]/[(3n-2)a(n)] = 1/(3n-2).
    [b(n)]^2 = 1/(3n-2)^2,
    t(2) = [b(1)]^2 + [b(2)]^2 = 1/4 + 1/16 = 5/16 < 5/12.
    n>=3時(shí),3(n-1)-2 >= 4.
    [b(n)]^2 = 1/(3n-2)^2 < 1/[(3n-2)(3n-5)] =(1/3) [1/(3n-5) - 1/(3n-2)]
    t(n) = [b(1)]^2 + [b(2)]^2 + [b(3)]^2 + ...+ [b(n-1)]^2 + [b(n)]^2
    = 1/4 + 1/16 + (1/3)[1/4 - 1/7 + 1/7 - 1/10 + ...+ 1/(3n-8)-1/(3n-5) + 1/(3n-5) - 1/(3n-2)]
    = 5/16 + (1/3)[1/4 - 1/(3n-2)]
    < 5/16 + 1/12
    = 15/48 + 4/48
    = 19/48
    < 20/48
    = 5/12.
    綜合,有,t(n) < 5/12
    我來回答
    類似推薦
    請(qǐng)使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點(diǎn),以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版