精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 生活中的數(shù)學(xué) 作文

    生活中的數(shù)學(xué) 作文
    利用六年級(jí)上學(xué)期的知識(shí)寫300字左右作文
    最好用分?jǐn)?shù)
    數(shù)學(xué)人氣:514 ℃時(shí)間:2019-10-03 10:10:28
    優(yōu)質(zhì)解答
    抽屜原理和六人集會(huì)問題
    “任意367個(gè)人中,必有生日相同的人.”
    “從任意5雙手套中任取6只,其中至少有2只恰為一雙手套.”
    “從數(shù)1,2,...,10中任取6個(gè)數(shù),其中至少有2個(gè)數(shù)為奇偶性不同.”
    .
    大家都會(huì)認(rèn)為上面所述結(jié)論是正確的.這些結(jié)論是依據(jù)什么原理得出的呢?這個(gè)原理叫做抽屜原理.它的內(nèi)容可以用形象的語言表述為:
    “把m個(gè)東西任意分放進(jìn)n個(gè)空抽屜里(m>n),那么一定有一個(gè)抽屜中放進(jìn)了至少2個(gè)東西.”
    在上面的第一個(gè)結(jié)論中,由于一年最多有366天,因此在367人中至少有2人出生在同月同日.這相當(dāng)于把367個(gè)東西放入366個(gè)抽屜,至少有2個(gè)東西在同一抽屜里.在第二個(gè)結(jié)論中,不妨想象將5雙手套分別編號(hào),即號(hào)碼為1,2,...,5的手套各有兩只,同號(hào)的兩只是一雙.任取6只手套,它們的編號(hào)至多有5種,因此其中至少有兩只的號(hào)碼相同.這相當(dāng)于把6個(gè)東西放入5個(gè)抽屜,至少有2個(gè)東西在同一抽屜里.
    抽屜原理的一種更一般的表述為:
    “把多于kn個(gè)東西任意分放進(jìn)n個(gè)空抽屜(k是正整數(shù)),那么一定有一個(gè)抽屜中放進(jìn)了至少k+1個(gè)東西.”
    利用上述原理容易證明:“任意7個(gè)整數(shù)中,至少有3個(gè)數(shù)的兩兩之差是3的倍數(shù).”因?yàn)槿我徽麛?shù)除以3時(shí)余數(shù)只有0、1、2三種可能,所以7個(gè)整數(shù)中至少有3個(gè)數(shù)除以3所得余數(shù)相同,即它們兩兩之差是3的倍數(shù).
    如果問題所討論的對(duì)象有無限多個(gè),抽屜原理還有另一種表述:
    “把無限多個(gè)東西任意分放進(jìn)n個(gè)空抽屜(n是自然數(shù)),那么一定有一個(gè)抽屜中放進(jìn)了無限多個(gè)東西.”
    抽屜原理的內(nèi)容簡明樸素,易于接受,它在數(shù)學(xué)問題中有重要的作用.許多有關(guān)存在性的證明都可用它來解決.
    1958年6/7月號(hào)的《美國數(shù)學(xué)月刊》上有這樣一道題目:
    “證明在任意6個(gè)人的集會(huì)上,或者有3個(gè)人以前彼此相識(shí),或者有三個(gè)人以前彼此不相識(shí).”
    這個(gè)問題可以用如下方法簡單明了地證出:
    在平面上用6個(gè)點(diǎn)A、B、C、D、E、F分別代表參加集會(huì)的任意6個(gè)人.如果兩人以前彼此認(rèn)識(shí),那么就在代表他們的兩點(diǎn)間連成一條紅線;否則連一條藍(lán)線.考慮A點(diǎn)與其余各點(diǎn)間的5條連線AB,AC,...,AF,它們的顏色不超過2種.根據(jù)抽屜原理可知其中至少有3條連線同色,不妨設(shè)AB,AC,AD同為紅色.如果BC,BD,CD3條連線中有一條(不妨設(shè)為BC)也為紅色,那么三角形ABC即一個(gè)紅色三角形,A、B、C代表的3個(gè)人以前彼此相識(shí):如果BC、BD、CD3條連線全為藍(lán)色,那么三角形BCD即一個(gè)藍(lán)色三角形,B、C、D代表的3個(gè)人以前彼此不相識(shí).不論哪種情形發(fā)生,都符合問題的結(jié)論.
    六人集會(huì)問題是組合數(shù)學(xué)中著名的拉姆塞定理的一個(gè)最簡單的特例,這個(gè)簡單問題的證明思想可用來得出另外一些深入的結(jié)論.這些結(jié)論構(gòu)成了組合數(shù)學(xué)中的重要內(nèi)容-----拉姆塞理論.從六人集會(huì)問題的證明中,我們又一次看到了抽屜原理的應(yīng)用.
    我來回答
    類似推薦
    請(qǐng)使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點(diǎn),以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版