精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • f(x)=∫(0-x)cost/1+sint²則∫(0-π/2)f'(x)/1+f²(x) dx =

    f(x)=∫(0-x)cost/1+sint²則∫(0-π/2)f'(x)/1+f²(x) dx =
    希望詳細(xì)易懂 本人數(shù)學(xué)不好
    數(shù)學(xué)人氣:178 ℃時間:2020-01-30 05:10:11
    優(yōu)質(zhì)解答
    f(x)=∫(0,x) cost / 1+sin^2t dt

    ∫(0,π/2) f'(x) / 1+f^2(x) dx
    =∫(0,π/2) 1 / 1+f^2(x) d(f(x))
    =arctan(f(x)) | (0,π/2)
    =arctan(f(π/2)) - arctan(f(0))
    又有:
    f(0)=∫(0,0) cost / 1+sin^2t dt=0,積分上下限一樣,積分明顯為0
    f(π/2)
    =∫(0,π/2) cost / 1+sin^2t dt
    =∫(0,π/2) 1 / 1+sin^2t d(sint)
    =arctan(sint) | (0,π/2)
    =arctan(1) - arctan(0)
    =π/4-0
    =π/4
    因此,
    ∫(0,π/2) f'(x) / 1+f^2(x) dx
    =arctan(f(π/2)) - arctan(f(0))
    =π/4-0
    =π/4
    有不懂歡迎追問
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版