試分別在AB、AC上求作點(diǎn)M、N,使得三角形PMN的周長最小.
作法:
(1)作出點(diǎn)P關(guān)于AB的對(duì)稱點(diǎn)P1;
(2)作出點(diǎn)P關(guān)于AC的對(duì)稱點(diǎn)P2;
(3)連接P1P2,分別交AB、AC于M、N.
則M、N就是要求作的點(diǎn).(此時(shí)三角形PMN周長最小)為什么這時(shí)周長最?。柯宰C:點(diǎn)P1和P關(guān)于AB對(duì)稱,則PM=P1M;同理:PN=P2N。即PM+MN+PN=P1M+MN+P2N=P1P2。------------------------(1)在AB上另取點(diǎn)M‘,在AC上另取點(diǎn)N’。同理可知:PM'=P1M',PN'=P2N',則PM'+M'N'+PN'=P1M'+M'N'+P2N'.---------------(2)根據(jù)兩點(diǎn)之間線段最短的道理可知:P1P2