常用的誘導(dǎo)公式有以下幾組:
公式一:
設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α與 -α的三角函數(shù)值之間的關(guān)系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α與α的三角函數(shù)值之間的關(guān)系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
誘導(dǎo)公式記憶口訣
※規(guī)律總結(jié)※
上面這些誘導(dǎo)公式可以概括為:
對(duì)于k•π/2±α(k∈Z)的個(gè)三角函數(shù)值,
①當(dāng)k是偶數(shù)時(shí),得到α的同名函數(shù)值,即函數(shù)名不改變;
?、诋?dāng)k是奇數(shù)時(shí),得到α相應(yīng)的余函數(shù)值,即sin→cos;cos→sin;tan→cot,cot→tan.
?。ㄆ孀兣疾蛔儯?br/> 然后在前面加上把α看成銳角時(shí)原函數(shù)值的符號(hào).
(符號(hào)看象限)
例如:
sin(2π-α)=sin(4•π/2-α),k=4為偶數(shù),所以取sinα.
當(dāng)α是銳角時(shí),2π-α∈(270°,360°),sin(2π-α)<0,符號(hào)為“-”.
所以sin(2π-α)=-sinα
上述的記憶口訣是:
奇變偶不變,符號(hào)看象限.
公式右邊的符號(hào)為把α視為銳角時(shí),角k•360°+α(k∈Z),-α、180°±α,360°-α
所在象限的原三角函數(shù)值的符號(hào)可記憶
水平誘導(dǎo)名不變;符號(hào)看象限.
各種三角函數(shù)在四個(gè)象限的符號(hào)如何判斷,也可以記住口訣“一全正;二正弦;三為切;四余弦”.
這十二字口訣的意思就是說:
第一象限內(nèi)任何一個(gè)角的四種三角函數(shù)值都是“+”;
第二象限內(nèi)只有正弦是“+”,其余全部是“-”;
第三象限內(nèi)切函數(shù)是“+”,弦函數(shù)是“-”;
第四象限內(nèi)只有余弦是“+”,其余全部是“-”.
上述記憶口訣,一全正,二正弦,三正切,四余弦
其他三角函數(shù)知識(shí):
同角三角函數(shù)基本關(guān)系
?、蓖侨呛瘮?shù)的基本關(guān)系式
倒數(shù)關(guān)系:
tanα •cotα=1
sinα •cscα=1
cosα •secα=1
商的關(guān)系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方關(guān)系:
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
同角三角函數(shù)關(guān)系六角形記憶法
六角形記憶法:
構(gòu)造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型.
(1)倒數(shù)關(guān)系:對(duì)角線上兩個(gè)函數(shù)互為倒數(shù);
(2)商數(shù)關(guān)系:六邊形任意一頂點(diǎn)上的函數(shù)值等于與它相鄰的兩個(gè)頂點(diǎn)上函數(shù)值的乘積.
?。ㄖ饕莾蓷l虛線兩端的三角函數(shù)值的乘積).由此,可得商數(shù)關(guān)系式.
?。?)平方關(guān)系:在帶有陰影線的三角形中,上面兩個(gè)頂點(diǎn)上的三角函數(shù)值的平方和等于下面頂點(diǎn)上的三角函數(shù)值的平方.
兩角和差公式
⒉兩角和與差的三角函數(shù)公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tana+tanB
tan(α+β)=——————
1-tanα •tanβ
tanα-tanβ
tan(α-β)=——————
1+tanα •tanβ
倍角公式
?、扯督堑恼摇⒂嘞液驼泄剑ㄉ齼缈s角公式)
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
2tanα
tan2α=—————
1-tan^2(α)
半角公式
⒋半角的正弦、余弦和正切公式(降冪擴(kuò)角公式)
1-cosα
sin^2(α/2)=—————
2
1+cosα
cos^2(α/2)=—————
2
1-cosα
tan^2(α/2)=—————
1+cosα
萬能公式
?、等f能公式
2tan(α/2)
sinα=——————
1+tan^2(α/2)
1-tan^2(α/2)
cosα=——————
1+tan^2(α/2)
2tan(α/2)
tanα=——————
1-tan^2(α/2)
萬能公式推導(dǎo)
附推導(dǎo):
sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α)).*,
?。ㄒ?yàn)閏os^2(α)+sin^2(α)=1)
再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))
然后用α/2代替α即可.
同理可推導(dǎo)余弦的萬能公式.正切的萬能公式可通過正弦比余弦得到.
三倍角公式
?、度督堑恼?、余弦和正切公式
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
3tanα-tan^3(α)
tan3α=——————
1-3tan^2(α)
三倍角公式推導(dǎo)
附推導(dǎo):
tan3α=sin3α/cos3α
=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)
?。?2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)
上下同除以cos^3(α),得:
tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))
sin3α=sin(2α+α)=sin2αcosα+cos2αsinα
=2sinαcos^2(α)+(1-2sin^2(α))sinα
?。?sinα-2sin^3(α)+sinα-2sin^2(α)
?。?sinα-4sin^3(α)
cos3α=cos(2α+α)=cos2αcosα-sin2αsinα
=(2cos^2(α)-1)cosα-2cosαsin^2(α)
?。?cos^3(α)-cosα+(2cosα-2cos^3(α))
?。?cos^3(α)-3cosα
即
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
三倍角公式聯(lián)想記憶
記憶方法:諧音、聯(lián)想
正弦三倍角:3元 減 4元3角(欠債了(被減成負(fù)數(shù)),所以要“掙錢”(音似“正弦”))
余弦三倍角:4元3角 減 3元(減完之后還有“余”)
☆☆注意函數(shù)名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示.
和差化積公式
?、啡呛瘮?shù)的和差化積公式
α+β α-β
sinα+sinβ=2sin—----•cos—---
2 2
α+βα-β
sinα-sinβ=2cos—----•sin—----
22
α+βα-β
cosα+cosβ=2cos—-----•cos—-----
22
α+βα-β
cosα-cosβ=-2sin—-----•sin—-----
22
積化和差公式
?、溉呛瘮?shù)的積化和差公式
sinα •cosβ=0.5[sin(α+β)+sin(α-β)]
cosα •sinβ=0.5[sin(α+β)-sin(α-β)]
cosα •cosβ=0.5[cos(α+β)+cos(α-β)]
sinα •sinβ=- 0.5[cos(α+β)-cos(α-β)]
和差化積公式推導(dǎo)
附推導(dǎo):
首先,我們知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb
我們把兩式相加就得到sin(a+b)+sin(a-b)=2sina*cosb
所以,sina*cosb=(sin(a+b)+sin(a-b))/2
同理,若把兩式相減,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2
同樣的,我們還知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb
所以,把兩式相加,我們就可以得到cos(a+b)+cos(a-b)=2cosa*cosb
所以我們就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2
同理,兩式相減我們就得到sina*sinb=-(cos(a+b)-cos(a-b))/2
這樣,我們就得到了積化和差的四個(gè)公式:
sina*cosb=(sin(a+b)+sin(a-b))/2
cosa*sinb=(sin(a+b)-sin(a-b))/2
cosa*cosb=(cos(a+b)+cos(a-b))/2
sina*sinb=-(cos(a+b)-cos(a-b))/2
好,有了積化和差的四個(gè)公式以后,我們只需一個(gè)變形,就可以得到和差化積的四個(gè)公式.
我們把上述四個(gè)公式中的a+b設(shè)為x,a-b設(shè)為y,那么a=(x+y)/2,b=(x-y)/2
把a(bǔ),b分別用x,y表示就可以得到和差化積的四個(gè)公式:
sinx+siny=2sin((x+y)/2)*cos((x-y)/2)
sinx-siny=2cos((x+y)/2)*sin((x-y)/2)
cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)
cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)
三角函數(shù)加減法公式
三角函數(shù)加減法公式
數(shù)學(xué)人氣:956 ℃時(shí)間:2020-04-08 22:46:26
優(yōu)質(zhì)解答
我來回答
類似推薦
- 求三角函數(shù)的計(jì)算公式(最簡(jiǎn)單的)
- 三角函數(shù)加減法公式.√3cosθ+sinθ=2sin(θ+60)是怎么推出來的?
- 三角函數(shù)有那些公式?
- 三角函數(shù)積分公式
- 三角函數(shù)的有關(guān)公式都有哪些?
- 大柏地的“柏”應(yīng)讀什么讀音
- 哪些藻類是原核生物?
- 把下面這些動(dòng)物和象征次連起來
- 八上科學(xué)(電阻)
- 9個(gè)600相加怎么算
- 小明在計(jì)算有余數(shù)的除法時(shí),把被除數(shù)115錯(cuò)寫成151,結(jié)果商比正確的結(jié)果大了3,但余數(shù)恰好相同,寫出這個(gè)除法算式:_.
- 在他們的業(yè)余時(shí)間 英語怎么說
猜你喜歡
- 1如何理解矛盾的兩種基本屬性在事物發(fā)展中的作用
- 2以《冬天來了 ,春天還會(huì)遠(yuǎn)嗎?》為題 主要是寫不怕困難,就離成功不遠(yuǎn)了
- 3英語17.-Are you going to have a holiday this year?
- 4橢圓C方程為(x^2)/8 +(Y^2)/4=1,若直線y=x+m與橢圓C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)M關(guān)于直線y=x+1的對(duì)稱點(diǎn)在圓X^2+Y^2=1上,求m的值
- 5用愿意.就.,愿意.就.造句
- 6下列說法中屬于控制噪音聲源的是 ( )屬于阻擋噪音傳播的措施是( )屬于防止噪聲進(jìn)入人耳的措施是
- 7仿寫句子,用上草長(zhǎng)鶯飛
- 8Here is a ticket to the movie for you.You are____(luck).填什么?為什么添這個(gè)?
- 9某元素的一種粒子的結(jié)構(gòu)示意圖為,下列說法錯(cuò)誤的是( ) A.該粒子屬于原子 B.該元素在化合物中顯+1價(jià) C.該元素的一個(gè)離子含有11個(gè)電子 D.該元素的原子在化學(xué)反應(yīng)中容易失去電子
- 10中國地球有多大?
- 11幾個(gè)關(guān)于餐廳英語用法的問題
- 12圓圓的爸爸去銀行取款,第一次取了存款的一半還多5元,第二次取了余下的一半還少10元,還剩135元,一共多少