得a2+b2+c2+2ab+2bc+2ac=4,
將已知代入,得ab+bc+ac=
1 |
2 |
由a+b+c=2得:c-1=1-a-b,
∴ab+c-1=ab+1-a-b=(a-1)(b-1),
同理,得bc+a-1=(b-1)(c-1),
ca+b-1=(c-1)(a-1),
∴原式=
1 |
(a?1)(b?1) |
1 |
(b?1)(c?1) |
1 |
(c?1)(a?1) |
=
c?1+a?1+b?1 |
(a?1)(b?1)(c?1) |
=
?1 |
(ab?a?b+1)(c?1) |
=
?1 |
abc?ac?bc+c?ab+a+b?1 |
=
?1 | ||
1?
|
2 |
3 |
故選D.