精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 勾股定理的5種證明方法

    勾股定理的5種證明方法
    要有圖
    數(shù)學(xué)人氣:941 ℃時間:2020-03-17 05:23:36
    優(yōu)質(zhì)解答
    證法1
    作四個全等的直角三角形,設(shè)它們的兩條直角邊長分別為a、b ,斜邊長為c.把它們拼成如圖那樣的一個多邊形,使D、E、F在一條直線上.過點C作AC的延長線交DF于點P.∵ D、E、F在一條直線上,且RtΔGEF ≌ RtΔEBD,∴ ∠EGF = ∠BED,∵ ∠EGF + ∠GEF = 90°,∴ ∠BED + ∠GEF = 90°,∴ ∠BEG =180°―90°= 90° 又∵ AB = BE = EG = GA = c,∴ ABEG是一個邊長為c的正方形.∴ ∠ABC + ∠CBE = 90° ∵ RtΔABC ≌ RtΔEBD,∴ ∠ABC = ∠EBD.∴ ∠EBD + ∠CBE = 90° 即 ∠CBD= 90° 又∵ ∠BDE = 90°,∠BCP = 90°,BC = BD = a.∴ BDPC是一個邊長為a的正方形.同理,HPFG是一個邊長為b的正方形.設(shè)多邊形GHCBE的面積為S,則 a^2+b^2=c^2
    證法2
    作兩個全等的直角三角形,設(shè)它們的兩條直角邊長分別為a、b(b>a) ,斜邊長為c.再做一個邊長為c的正方形.把它們拼成如圖所示的多邊形,使E、A、C三點在一條直線上.過點Q作QP‖BC,交AC于點P.過點B作BM⊥PQ,垂足為M;再過點 F作FN⊥PQ,垂足為N.∵ ∠BCA = 90°,QP‖BC,∴ ∠MPC = 90°,∵ BM⊥PQ,∴ ∠BMP = 90°,∴ BCPM是一個矩形,即∠MBC = 90°.∵ ∠QBM + ∠MBA = ∠QBA = 90°,∠ABC + ∠MBA = ∠MBC = 90°,∴ ∠QBM = ∠ABC,又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c,∴ RtΔBMQ ≌ RtΔBCA.同理可證RtΔQNF ≌ RtΔAEF.即a^2+b^2=c^2
    證法3
    作兩個全等的直角三角形,設(shè)它們的兩條直角邊長分別為a、b(b>a) ,斜邊長為c.再作一個邊長為c的正方形.把它們拼成如圖所示的多邊形.分別以CF,AE為邊長做正方形FCJI和AEIG,∵EF=DF-DE=b-a,EI=b,∴FI=a,∴G,I,J在同一直線上,∵CJ=CF=a,CB=CD=c,∠CJB = ∠CFD = 90°,∴RtΔCJB ≌ RtΔCFD ,同理,RtΔABG ≌ RtΔADE,∴RtΔCJB ≌ RtΔCFD ≌ RtΔABG ≌ RtΔADE ∴∠ABG = ∠BCJ,∵∠BCJ +∠CBJ= 90°,∴∠ABG +∠CBJ= 90°,∵∠ABC= 90°,∴G,B,I,J在同一直線上,a^2+b^2=c^2
    證法4
    作三個邊長分別為a、b、c的三角形,把它們拼成如圖所示形狀,使H、C、B三點在一條直線上,連結(jié) BF、CD.過C作CL⊥DE,交AB于點M,交DE于點L.∵ AF = AC,AB = AD,∠FAB = ∠GAD,∴ ΔFAB ≌ ΔGAD,∵ ΔFAB的面積等于,ΔGAD的面積等于矩形ADLM 的面積的一半,∴ 矩形ADLM的面積 =.同理可證,矩形MLEB的面積 =.∵ 正方形ADEB的面積 = 矩形ADLM的面積 + 矩形MLEB的面積 ∴ 即a^2+b^2=c^2沒圖啊http://wenku.baidu.com/view/08cfca80d4d8d15abe234ec8.htmlhttp://baike.baidu.com/view/366.htm 兩個網(wǎng)址自己去看吧 要我說學(xué)這么多方法干嘛啊
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機版