∴∠BAC=45°,即∠PAC+∠PAB=45°,
又在△APB中,∠APB=135°,
∴∠PBA+∠PAB=45°,
∴∠PAC=∠PBA,
又∠APB=∠APC,
∴△CPA∽△APB.
(2)∵△ABC是等腰直角三角形,
∴
CA |
AB |
1 | ||
|
又∵△CPA∽△APB,
∴
CP |
PA |
PA |
PB |
CA |
AB |
1 | ||
|
令CP=k,則PA=
2 |
又在△BCP中,∠BPC=360°-∠APC-∠APB=90°,
∴tan∠PCB=
PB |
PC |
CA |
AB |
1 | ||
|
CP |
PA |
PA |
PB |
CA |
AB |
1 | ||
|
2 |
PB |
PC |