精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 首先我們可以從較簡單的一元高次方程求根公式的推導(dǎo)過程來尋找規(guī)律,如推導(dǎo)

    首先我們可以從較簡單的一元高次方程求根公式的推導(dǎo)過程來尋找規(guī)律,如推導(dǎo)
    X3+ax2+bx+c=0求根公式我是這樣做的;
    根據(jù)前面公共根方程的推導(dǎo)定理我們知道,只要求出一個和X3+ax2+bx+c=0
    有一個公共相等根方程出來,就必可推導(dǎo)出符合二個方程求解的公解方程來.
    又根據(jù)前面公共根方程判別定理我們知道,如果方程X3+ax2+bx+c=0和另一方程x2+mx+n=0之間的系數(shù)存在:n3 +a(-mn2 )+b(m2n -2n2)+c(-m3+3mn )+a2(n2)+ab(-mn)+ac(m 2-2n )+b2(n)+bc(-m)+c2=0 函數(shù)關(guān)系時二個方程必有公共等根的.
    我本想在此公布我的論證結(jié)果,可是在這里無法標(biāo)出平方,立方等,沒辦法公布,太讓我失望。我六年前就攻破了所有方程求根公式的推導(dǎo)規(guī)律,看來只有等洋人發(fā)現(xiàn)這個規(guī)律的時侯,人類才會相信我的話了。剛才一位網(wǎng)友在回答我問題的時侯告訴如何標(biāo)立方問題我表示感謝,我太不習(xí)慣這種標(biāo)法。也不贊同他對我提問題的看法,兵法說,知彼知已百戰(zhàn)不殆,我是知道阿貝爾論證錯誤所在的。阿貝爾卻不知我是怎樣做的,世界上沒有人知道我是怎么做的。我唯一不成功的地方就是找不到說理的地方。
    我的貢獻(xiàn)不僅是這項,早在1996年,我就發(fā)現(xiàn)哥德巴赫猜想的近似計算公式,98年,發(fā)現(xiàn)了利用方程系數(shù)判別二個方程之間是否有等存在的判別定理,從而發(fā)明了對高次方程組進(jìn)行公式化快速消元的問 1999年又發(fā)現(xiàn)只要二個方程有等根存在,就必定可推導(dǎo)出符合二個方程求解的公解方程問題,再經(jīng)過六年艱苦卓絕的努力終于發(fā)現(xiàn)所有高次方程求根公式的推導(dǎo)規(guī)律。我只求有一個公開講理的地方,其他沒什么。
    數(shù)學(xué)人氣:558 ℃時間:2020-02-03 18:39:21
    優(yōu)質(zhì)解答
    一般來講,在百度知道里表示乘方用“^”來表示.例如:“x的平方”可表示成“x^2”,x的(a+1)次方可表示成“x^(a+1)”.
    另外朋友,好象解高次方程的方法,數(shù)學(xué)上己經(jīng)推出來了,并有五次方程及以上不能用一般根式來表達(dá)的說法(當(dāng)然除了特殊方程),叫做什么阿貝爾定理.所以朋友要仔細(xì)檢查一下自己的研究發(fā)現(xiàn).我很佩服能有獨到見解的人.
    朋友如果確信自己是正確的,不妨到一些數(shù)學(xué)雜志社投稿或投稿至中科院請求鑒定.如果都不成功,不妨將成果發(fā)布到網(wǎng)上,讓時間來證明一切.如果朋友不介意,能否發(fā)一份到我的郵箱里,當(dāng)然,我只是名業(yè)余數(shù)學(xué)愛好者,不可能幫到朋友的,只能是學(xué)習(xí)了.我的郵箱是:zhou5468@sina.com
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版