1.求導數 y=ln[(x-1)(x-2)/(x+3)(x+4)]
y=ln(x-1)+ln(x-2)-ln(x+3)-ln(x+4)
故y′=1/(x-1)+1/(x-2)-1/(x+3)-1/(x-4)
2.設函數f(x)=ax+1,當x≦2; f(x)=x²+b,當x>2};在x=2處可導,求常數a和b的值.
在x=2處可導,那么在x=2處必連續(xù),故有f(2)=2a+1=4+b,即有2a-b=3.(1)
在x=2處可導,則在x=2處的左導數必等于其右導數,故有f′(2)=a=4,代入(1)得b=5.
3.求導數 y=1+x/√(1-x)
y′=[√(1-x)+x/2√(1-x)]/(1-x)=(2-x)/[2(1-x)√(1-x)]
4.求極限x→0lim[(1/x)-1/ln(1+x)]
x→0lim[(1/x)-1/ln(1+x)]=x→0lim{[ln(1+x)-x]/[xln(1+x)]}
=x→0lim{[1/(1+x)-1]/[ln(1+x)+x/(1+x)]}
=x→0lim{(-x)/[(1+x)ln(1+x)+1]}=0
5求不定積分∫{1/[(cos²)x]}d(cos x)
原式=-1/cosx+C
6求不定積分∫sin²(x/2)dx
原式=∫[(1-cosx)/2]dx=(1/2)(x-sinx)+C
7.∫cos2x/(cosx-sinx)dx=∫[(cos²x-sin²x)/(cosx-sinx)]dx=∫(cosx+sinx)dx=sinx-cosx+C
8.∫(cotx/√sinx)dx=∫(cosx/sinx√sinx)dx=∫[(sinx)^(-3/2)]dsinx=-2/√sinx+C
9.∫dx/√(a²-x²)=∫d(x/a)/√[1-(x/a)²]=arcsin(x/a)+C
10.∫dx/(a²+x²)=∫d(x/a)/[1+(x/a)²]=arctan(x/a)+C
11.∫x²f(x³)f′(x³)dx=(1/3)∫f(x³)f′(x³)dx³==(1/3)∫f(x³)df′(x³)=(1/3)[f²(x³)]/2+C
12.∫tanx(tanx+1)dx=∫tan²xdx+∫tanxdx=∫[(1/cos²x)-1]dx-∫d(cosx)/cosx=tanx-x-ln︱cosx︱+C
13.∫[1/(1-x²)^(3/2]dx
令x=sinu,則dx=cosudu,于是原式=∫cosudu/cos³u=∫du/cos²u=tanu+C=x/√(1-x²)+C
14.∫[1/(x²+x-2)]dx=∫[1/(x+2)(x-1)]dx=(1/3)∫[1/(x-1)-1/(x+2)]dx=(1/3)[ln(x-1)-ln(x+2)]+C
=(1/3)ln[(x-1)/(x+2)]+C
15.∫(x²arctanx)/(1+x²)dx=∫x²d(arctanx)=x²arctanx-2∫xarctanxdx
令arctanx=u,則x=tanu,dx=du/cos²u,于是
-2∫xarctanxdx=-2∫(utanu/cos²u)du=-2∫(usinu/cos³u)du=-∫ud(1/cos²u)=-u/cos²u+∫du/cos²u
=-u/cos²u+tanu=-(1+x²)arctanx+x
故.∫(x²arctanx)/(1+x²)dx=x²arctanx-(1+x²)arctanx+x+C
16.設∫xf(x)dx=arcsinx+c,求∫[1/f(x)]dx
∵∫xf(x)dx=arcsinx+c,∴xf(x)=(arcsinx+C)′=1/√(1-x²),于是f(x)=1/x√(1-x²),
故∫[1/f(x)]dx=∫x√(1-x²)dx=-(1/2)∫[√(1-x²)]d(1-x²)=-√(1-x²)+C
求極限導數微分不定積分
求極限導數微分不定積分
y=ln根號[分子(x-1)(x-2)分母(x+3)(x+4)] 求y的導數
設函數f(x)={ax+1,x小于等于2}
{ x平方+b,x>2}
在x=2處可導,求常數a和b的值
設函數f(x)={ae的2x次方,x
y=ln根號[分子(x-1)(x-2)分母(x+3)(x+4)] 求y的導數
設函數f(x)={ax+1,x小于等于2}
{ x平方+b,x>2}
在x=2處可導,求常數a和b的值
設函數f(x)={ae的2x次方,x
其他人氣:990 ℃時間:2019-12-17 04:22:23
優(yōu)質解答
我來回答
類似推薦
- 求極限導數微分不定積分
- 談談導數、微分、不定積分、定積分的基本思想,并敘述導數與不定積分,微分與不定積分的關系.
- 微分與導數還有不定積分的關系是什么
- 我學了極限,導數,微分,不定積分,定積分.但總是理不清它們的區(qū)別和聯系.
- 微分 導數 定積分 不定積分 是什么,他們有什么區(qū)別?
- 甲乙兩數和是50 ,甲數的3倍于乙數的4倍的和是165,甲乙兩數是多少?
- 罐頭廠要給水果罐頭做一種圓柱形的包裝盒,已知這個罐頭盒的底面半徑為5cm,高6cm,同時要在盒的外面貼一
- 等腰三角形腰和底邊長的比是3:2,若底邊長為6,則底邊上的高是多少?腰上的高是多少?
- 填成語啊..平( )無( ) ,形( )影( ) ,()云()霧
- 一個圓柱高9分米,側面積226.08平方分米,它的底面積是多少平方分米?
- 已知cosa=1/7,cos(a+b)=13/14.且a,b屬于(0,派/2)
- 2.3g鈉由原子變成離子時,失去的電子數為0.1NA(要過程)
猜你喜歡
- 1一個德語問題
- 2隨機變量的概率密度問題
- 3一條褲子,原價120元,提價30%以后,又因過季降價30%,現在售價是多少?
- 4夜間,可看到池水能倒影路燈,若池水深2米,路燈距水面8米燈在水面的像到燈的距離應
- 51.將一個長方體平均截成5段,每段長5分米,表面積增加了120平方分米.原來長方體的體積是多少立方分米?
- 6調節(jié)水龍頭,讓水一滴滴流出,在下方放一盤子,調節(jié)盤子高度,使水滴碰到盤子時,恰有另一水滴開始下落,而空中還有一滴正在下落的水滴,測出水龍頭到盤子的高度為h(m),從第一
- 7冬天窗戶上為什么會有水蒸氣
- 8質量為m的木塊放在水平傳送帶上,隨傳送帶一起向前運動,木塊與傳送帶間的動摩擦因數為μ,則下列說法正
- 9再勇敢些,用英文怎么說.be more modest,對嗎,
- 10已知命題p:方程x2+mx+1=0有兩個不等的負實根,命題q:方程4x2+4(m-2)x+1=0無實根,若p或q為真,p且q為假,則實數m的取值范圍是( ?。?A.(1,2]∪[3,+∞) B.(1,2)∪(3,+∞) C.(1,2]
- 11(1)若不等式組(1)x+ab 的解集是-2
- 1264噸硫最能能制取多少硫酸?