精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 函數(shù)f(x)=sinx+cosx在[-π/2,π/2]上的最大,最小值分別是

    函數(shù)f(x)=sinx+cosx在[-π/2,π/2]上的最大,最小值分別是
    運(yùn)用導(dǎo)數(shù)的方法解決
    數(shù)學(xué)人氣:205 ℃時(shí)間:2019-12-04 08:17:20
    優(yōu)質(zhì)解答
    f(x)=sinx+cosx
    =√2(√2/2sinx+√2/2cosx)
    =√2sin(x+π/4)
    ∵-π/2抱歉,我需要運(yùn)用導(dǎo)數(shù)的方法解決早說(shuō)嘛,f(x)=sinx+cosxf'(x)=cosx-sinx=0 (令它=0,找極值點(diǎn))√2/2cosx-√2/2sinx=0cos(x+π/4)=0∵-π/2<=x<=π/2∴-π/4<=x+π/4<=3π/4∴當(dāng)x+π/4=π/2為極值點(diǎn)x=π/4當(dāng) -π/4<=x+π/4<=π/2時(shí)cos為增區(qū)間當(dāng)π/2<=x+π/4<=3π/4時(shí)cos為減區(qū)間∴最大值是f(π/4)=√2/2+√2/2=√2∵f(-π/2)=sin(-π/2)+cos(-π/2)=-1f(π/2)=sinπ/2+cosπ/2=1∴最小值是f(-π/2)=-1為什么當(dāng)x+π/4=π/2為極值點(diǎn)我暈,你不是學(xué)過(guò)導(dǎo)數(shù)嗎,這個(gè)忘了f'(x)=cosx-sinx=√2(√2/2cosx-√2/2sinx)=√2cos(x+π/4)=0∵-π/2<=x<=π/2∴-π/4<=x+π/4<=3π/4∴當(dāng)x+π/4=π/2時(shí) f'(x)=0∴x+π/4=π/2為極值點(diǎn)
    我來(lái)回答
    類(lèi)似推薦
    請(qǐng)使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點(diǎn),以保證最佳閱讀效果。本頁(yè)提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版