AB=AC=5,BC=4,過(guò)A點(diǎn)作AD⊥BC,垂足為D,
cosB=
BD |
AB |
2 |
5 |
∴cosA≈0.68;
解法二:如圖,AB=AC=5,BC=4,過(guò)A點(diǎn)作AD⊥BC,垂足為D,
過(guò)C點(diǎn)作CE⊥AB,垂足為E,
由勾股定理,得AD=
AB2?BD2 |
21 |
由面積法可知,CE?AB=AD?BC,
∴CE=
4
| ||
5 |
AC2?CE2 |
17 |
5 |
∴cosA=
AE |
AC |
17 |
25 |
BD |
AB |
2 |
5 |
AB2?BD2 |
21 |
4
| ||
5 |
AC2?CE2 |
17 |
5 |
AE |
AC |
17 |
25 |