又把Rt△BCE繞點B順時針旋轉(zhuǎn)90°,得△BGE′,
則BE′=BE且∠EBE′=90°,
∵∠ABE=45°,AB=AB,
∴△ABE′≌△ABE,
∴AE′=AE=10,設(shè)CE=x,
則AG=10-x,DE=12-x,AD=DG-AG=x+2,
在Rt△ADE中,由(12-x)2+(x+2)2=102,得x=4或x=6.
∵AD∥CF,
∴△CEF∽△DEA,
S△CEF |
S△DEA |
CE |
DE |
x |
12?x |
又S△ADE=
1 |
2 |
1 |
2 |
∴S△CEF=
x2(x+2) |
2(12?x) |
當x=4時,S△ADE=24,S△CEF=6,故S△ADE+S△CEF=30,
當x=6時,S△ADE=24,S△CEF=24,故S△ADE+S△CEF=48.
故本題答案為:30或48.