精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • lim(x->1) x^(1/(1-x)) lim(x->0) x^(tanx)的值

    lim(x->1) x^(1/(1-x)) lim(x->0) x^(tanx)的值
    數(shù)學(xué)人氣:399 ℃時(shí)間:2020-02-03 18:43:55
    優(yōu)質(zhì)解答
    1.lim(x->1)[x^(1/(1-x))]=?
    ∵lim(x->1)[lnx/(1-x)]=lim(x->1)[(1/x)/(-1)] (0/0型極限,應(yīng)用羅比達(dá)法則)
    =lim(x->1)[(-1)/x]
    =-1
    ∴l(xiāng)im(x->1)[x^(1/(1-x))]=lim(x->1){e^[lnx/(1-x)]}
    =e^{lim(x->1)[lnx/(1-x)]}
    =e^(-1)
    =1/e.
    2.lim(x->0)[x^(tanx)]=?
    ∵lim(x->0)(tanx*lnx)=lim(x->0)[(sinx/x)(1/cosx)(lnx/(1/x))]
    =[lim(x->0)(sinx/x)]*[lim(x->0)(1/cosx)]*[lim(x->0)(lnx/(1/x))]
    =1*1*[lim(x->0)(lnx/(1/x))] (應(yīng)用重要極限)
    =lim(x->0)(lnx/(1/x))
    =lim(x->0)[(1/x/(-1/x²))] (∞/∞型極限,應(yīng)用羅比達(dá)法則)
    =lim(x->0)(-x)
    =0
    ∴l(xiāng)im(x->0)[x^(tanx)]=lim(x->0)[e^(tanx*lnx)]
    =e^[lim(x->0)(tanx*lnx)]
    =e^(0)
    =1.
    我來(lái)回答
    類似推薦
    請(qǐng)使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點(diǎn),以保證最佳閱讀效果。本頁(yè)提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版