f'(x)=(2x-2)?e-x-(x2-2x+1)?e-x=-(x-1)(x-3)?e-x…(2分)
當(dāng)x變化時(shí),f(x),f'(x)的變化情況如下表:
x | (-∞,1) | 1 | (1,3) | 3 | (3,+∞) |
f'(x) | - | 0 | + | 0 | - |
f(x) | 遞減 | 極小值 | 遞增 | 極大值 | 遞減 |
( II)f'(x)=(2ax-2)?e-x-(ax2-2x+1)?e-x=-e-x[ax2-2ax-2x+3]
令g(x)=ax2-2(a+1)x+3
①若a=0,則g(x)=-2x+3,在(-1,1)內(nèi),g(x)>0,
即f'(x)<0,函數(shù)f(x)在區(qū)間[-1,1]上單調(diào)遞減.…(7分)
②若a>0,則g(x)=ax2-2(a+1)x+3,其圖象是開口向上的拋物線,對(duì)稱軸為x=
a+1 |
a |
當(dāng)且僅當(dāng)g(1)≥0,即0<a≤1時(shí),在(-1,1)內(nèi)g(x)>0,f'(x)<0,
函數(shù)f(x)在區(qū)間[-1,1]上單調(diào)遞減.…(9分)
③若a<0,則g(x)=ax2-2(a+1)x+3,其圖象是開口向下的拋物線,
當(dāng)且僅當(dāng)
|
5 |
3 |
函數(shù)f(x)在區(qū)間[-1,1]上單調(diào)遞減.…(11分)
綜上所述,函數(shù)f(x)在區(qū)間[-1,1]上單調(diào)遞減時(shí),a的取值范圍是?
5 |
3 |