x2+4 |
2 |
∴4≤f(2)≤4,∴f(2)=4.
(2) 設(shè)f(x)=ax2+bx+c(a≠0).
∵f(-2)=0,f(2)=4,
∴
|
|
∵ax2+bx+c≥2x,即ax2-x+2-4a≥0恒成立,
∴△=1-4a(2-4a)≤0?(4a-1)2≤0,
∴a=
1 |
4 |
故f(x)=
x2 |
4 |
(3)證明:∵bn=
1 |
f(n) |
4 |
(n+2)2 |
4 |
(n+2)(n+3) |
1 |
n+2 |
1 |
n+3 |
∴Sn=b1+b2+…+bn>4[(
1 |
3 |
1 |
4 |
1 |
4 |
1 |
5 |
1 |
n+2 |
1 |
n+3 |
1 |
3 |
1 |
n+3 |
4n |
3(n+3) |