精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 已知向量a=1,b=2,c=3,且向量a,b,c兩兩的夾角都是120度,求(1)(2a+3c)(b+2c) (2)|a+b+c| (3)a+b+c與c所成

    已知向量a=1,b=2,c=3,且向量a,b,c兩兩的夾角都是120度,求(1)(2a+3c)(b+2c) (2)|a+b+c| (3)a+b+c與c所成
    的夾角.
    其他人氣:441 ℃時間:2020-06-13 02:10:16
    優(yōu)質(zhì)解答
    向量|a|=1,|b|=2,|c|=3,且向量a,b,c兩兩的夾角都是120度,
    則a•b=-1,b•c=-3,c•a=-3/2.
    (1)(2a+3c)(b+2c)=2a•b+4 c•a+3 b•c+6c^2
    =37.
    (2)|a+b+c|^2=a^2+b^2+c^2+2a•b+2 c•a+2 b•c
    =3,
    |a+b+c|=√3.
    (3) (a+b+c)•c=a•c+b•c+c^2=9/2.
    設(shè)a+b+c與c所成的夾角為θ,
    則cosθ=(a+b+c)•c/[|a+b+c||c|]
    =(9/2)/( 3√3)
    =√3/2,
    θ=π/6.
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點(diǎn),以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版