則f(x2)-f(x1)=x13-x23=(x1-x2)(x12+x1x2+x22)
∵x1<x2,
∴x1-x2<0.
當(dāng)x1x2<0時(shí),有x12+x1x2+x22=(x1+x2)2-x1x2>0;
當(dāng)x1x2≥0時(shí),有x12+x1x2+x22>0;
∴f(x2)-f(x1)=(x1-x2)(x12+x1x2+x22)<0.
即f(x2)<f(x1)
所以,函數(shù)f(x)=-x3+1在(-∞,+∞)上是減函數(shù).
證法二:在(-∞,+∞)上任取x1,x2,且x1<x2,
則f(x2)-f(x1)=x13-x23=(x1-x2)(x12+x1x2+x22).
∵x1<x2,
∴x1-x2<0.
∵x1,x2不同時(shí)為零,
∴x12+x22>0.
又∵x12+x22>
1 |
2 |
∴x12+x1x2+x22>0,
∴f(x2)-f(x1)=(x1-x2)(x12+x1x2+x22)<0.
即f(x2)<f(x1).
所以,函數(shù)f(x)=-x3+1在(-∞,+∞)上是減函數(shù).