![](http://hiphotos.baidu.com/zhidao/pic/item/37d3d539b6003af3eefb6cd1362ac65c1038b63a.jpg)
∵AB⊥BC,PA∩AB=A,∴BC⊥平面PAB,
∵AE?平面PAB,∴AE⊥BC,
∵AE⊥PB,PB∩BC=B,∴AE⊥平面PBC,
∵AE?平面AEF,∴平面AEF⊥平面PBC;
(2)∵BC⊥平面PAB,PB?平面PAB,∴BC⊥PB,
結(jié)合AB⊥BC,可得∠PBA是二面角P-BC-A的平面角,
∵Rt△PAB中,PA=AB=2,∴∠PBA=45°,
由此可得二面角P-BC-A的大小為45°;
(3)由(1)AE⊥平面PBC
又∵AF⊥PC
∴EF⊥PC(三垂線定理逆定理)
∴△PEF∽△PCB
∴=
S△PEF |
S△PBC |
PE2 |
PC2 |
1 |
6 |
1 |
6 |
| ||
3 |
∴VP-AEF=VA-PEF=
1 |
3 |
2 |
| ||
3 |
2 |
9 |