當a<2時,f(x)=x2-2ax+2在[2,4]上是增函數(shù),故最大值f(4)=18-8a,最小值f(2)=6-4a
當a>4時,f(x)=x2-2ax+2在[2,4]上是減函數(shù),故最大值f(2)=6-4a,最小值f(4)=18-8a
當2≤a≤4時,f(x)=x2-2ax+2在[2,4]上先減后增,最小值f(a)=2-a2,
①2≤a<3,最大值f(4)=18-8a,
②3≤a≤4,最大值f(2)=6-4a,
綜上得,二次函數(shù)f(x)=x2-2ax+2在[2,4]上的最大值f(a)=
|
最小值f(a)=
|