精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 設(shè)無窮等差數(shù)列{an}的前n項和為sn.若首項a1=3/2,公差d=1,求滿足(sk)22的正整數(shù)k.求所有的無窮等差數(shù)列{an},使得對于一切正整數(shù)k都有sk2=(sk)2成立

    設(shè)無窮等差數(shù)列{an}的前n項和為sn.若首項a1=3/2,公差d=1,求滿足(sk)22的正整數(shù)k.求所有的無窮等差數(shù)列{an},使得對于一切正整數(shù)k都有sk2=(sk)2成立
    數(shù)學(xué)人氣:798 ℃時間:2020-02-01 01:51:29
    優(yōu)質(zhì)解答
    a(n) = 3/2 + (n-1) = n + 1/2 = (2n+1)/2.
    s(n) = n(n+1)/2 + n/2 = n(n+2)/2,
    s[k^2] = k^2(k^2 + 2)/2,
    [s(k)]^2 = [k(k+2)/2]^2 = k^2(k+2)^2/4,
    s[k^2] = k^2(k^2 + 2)/2 = [s(k)]^2 = k^2(k+2)^2/4,
    2(k^2 + 2) = (k+2)^2 = k^2 + 4k + 4,
    0 = k^2 - 4k = k(k-4),
    k=4.
    ----------------
    a(n) = a + (n-1)d.
    s(n) = na + n(n-1)d/2.
    s[k^2] = ak^2 + k^2(k^2-1)d/2.
    [s(k)]^2 = [ak + k(k-1)d/2]^2.
    s[k^2] = ak^2 + k^2(k^2 - 1)d/2 = [s(k)]^2 = [ak + k(k-1)d/2]^2 = k^2[a + (k-1)d/2]^2,
    a + (k^2 - 1)d/2 = [a + (k-1)d/2]^2 = [a-d/2 + kd/2]^2 = (a-d/2)^2 + (a-d/2)dk + (d/2)^2k^2,
    0 = k^2(d/2 - d^2/4) - k(a-d/2)d + (a-d/2) - (a-d/2)^2
    要使得上面等式恒成立,
    則,
    0 = d^2/4 - d/2 = (d/4)(d-2),d=2.
    0 = (a-d/2)d,a = d/2 = 1.
    0 = (a-d/2)-(a-d/2)^2 成立.
    因此,a(n) = 1 + 2(n-1) = 2n-1.
    只有無窮等差數(shù)列{a(n) = 2n-1}使得對于一切正整數(shù)k,都有s(k^2) = [s(k)]2成立.
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機版