對f(x)=f(x)=a^x-a^(-x)求導(dǎo)數(shù),f(x)'=a^x*lna-a^(-x)*lna*(-1)=lna*[a^x+a^(-x)],當(dāng)f(x)'<0時,原函數(shù)遞減.化簡f(x)'得lna*[(a^x)^2+1]
/a^x<0,即lna*a^x<0,相當(dāng)于lna>0且a^x<0,或lna<0且a^x>0,前面一個無解,后面解得00;b>0,0
函數(shù)f(x)=a^x-a^-x在R上單調(diào)遞減,求a的取值范圍
函數(shù)f(x)=a^x-a^-x在R上單調(diào)遞減,求a的取值范圍
函數(shù) f(x)=a^x-a^(-x) 在R上單調(diào)遞減,求a的取值范圍
函數(shù) f(x)=a^x-a^(-x) 在R上單調(diào)遞減,求a的取值范圍
數(shù)學(xué)人氣:221 ℃時間:2020-06-17 13:05:31
優(yōu)質(zhì)解答
我來回答
類似推薦
- 若函數(shù)f(x)=1/x+1在(a,+∞)上單調(diào)遞減,則a的取值范圍是
- 若函數(shù)f(x)=loga(a-x)在[2,3]上單調(diào)遞減,則正數(shù)a的取值范圍是
- 若函數(shù)y=f(x)在R上單調(diào)遞減,且f(t^2)-f(t)
- 設(shè)函數(shù)fx=(ax-1)/(x+1),其中∈R,若fx在區(qū)間(0,+∞)上是單調(diào)遞減函數(shù),求a的取值范圍
- f(x)=x2+2(m-1)x+2在區(qū)間(-∞,4]上單調(diào)遞減,則m的取值范圍是_.
- 函數(shù)f(x)=sinx-cosx^2的最小值是?
- 英語翻譯
- I took my grandpa to the hospital this morning,_____ I missed the first class.
- So crazy
- 方差是各個數(shù)據(jù)與平均數(shù)之差的平方的平均數(shù)
- 函數(shù)y=f(x)與它反函數(shù)y=f^-1(x)怎么讀?
- These are photos of my families.Look at them 改錯