由an+1*√[(1/an^2)+4]=1 變形得1/a(n+1)^2-1/an^2=4
則{1/an^2}為首項為1公差為4的等差數(shù)列,故1/an^2=1+4(n-1)=4n-3
則an^2=1/(4n-3) 剩下的自己完成吧!這步我算出來了重點是后面我不會后面S2n+1-Sn能說明白一點么?S2n+1-Sn≤m/30對任意的n屬于正整數(shù)恒成立不是這個意思,我是說S2n+1-Sn 中的2n+1是一個整體還S2n加1呀S(2n+1)-S(n)≤(m/30)對任意的n屬于正整數(shù)恒成立解:設(shè)f(n)=S(2n+1)-Sn 則f(n+1)=S(2n+3)-S(n+1) 則f(n+1)-f(n)=S(2n+3)-S(n+1)-[S(2n+1)-Sn] =a(2n+3)^2+a(2n+2)-a(n+1)=1/(8n+9)+1/(8n+5)-1/(4n+1) =(-40n+31)/[(8n+9)(8n+5)(4n+1)<0故f(n)為減函數(shù),故當(dāng)n=1時f(n)最大,此時最大值等于f(1)=S3-S1=1/5+1/9=14/45故只需14/45<=m/30即可解得m的最小值為10
數(shù)列{an}滿足a1=1,an+1*√[(1/an^2)+4]=1,記Sn=a1^2+a2^2+…+an^2,若S2n+1-Sn≤m/30對任意的n∈N+恒成立
數(shù)列{an}滿足a1=1,an+1*√[(1/an^2)+4]=1,記Sn=a1^2+a2^2+…+an^2,若S2n+1-Sn≤m/30對任意的n∈N+恒成立
求正整數(shù)m的最小值?幫個忙謝謝.
求正整數(shù)m的最小值?幫個忙謝謝.
數(shù)學(xué)人氣:710 ℃時間:2020-03-31 19:50:40
優(yōu)質(zhì)解答
我來回答
類似推薦
- 數(shù)列{an}滿足an+1+an=4n-3(n∈N*) (Ⅰ)若{an}是等差數(shù)列,求其通項公式; (Ⅱ)若{an}滿足a1=2,Sn為{an}的前n項和,求S2n+1.
- 在等差數(shù)列{an}中,a1=1,前n項和Sn滿足條件S2nSn=4,n=1,2,… (1)求數(shù)列{an}的通項公式和Sn; (2)記bn=an?2n-1,求數(shù)列{bn}的前n項和Tn.
- 已知數(shù)列{An}中,A1=2,前n項和為Sn,當(dāng)n=N*且n≥2時,恒有3Sn-4,An,2-(3/2)(Sn-1),成等差數(shù)列
- 等差數(shù)列{an}中,a1=1,前n項和Sn滿足條件S2n/Sn=4,n=1,2.,記bn=an*2^(n-1),求數(shù)列{bn}的前n項
- 等差數(shù)列an中,a1=1前n項和Sn,滿足條件S2n/Sn=4n+2/n+1,求an通項
- 比值是七分之一的比有幾個?是怎么解的?最好有算式!急
- 只要是“to+動詞原形”就是動詞不定式嗎?
- 如夢令 李清照 思想、主題、意境
- 馬說一文里對“食馬者”的無知發(fā)出強烈譴責(zé)的語句是什么?
- 一塊紅綢,長2.4米,寬70厘米.要做直角邊分別為8厘米,5厘米的三角形小旗,可以做幾面?
- 已知∠AOB與∠BOC互為補角,OD是∠AOB的平分線,OE在∠BOC內(nèi),∠BOE=1/2∠EOC,∠DOE=72°,求∠EOC的度數(shù).
- 九牛一毛、滄海一粟這二個詞表現(xiàn)了什么?
猜你喜歡
- 1怎樣判斷一個有機物分子式平面結(jié)構(gòu)還是立體結(jié)構(gòu)
- 2求一套九年級一元二次方程整章的數(shù)學(xué)卷
- 3in the summer of 1980 a spanish tourist ,Gasper Carner,went to Great Britai
- 4除了攝氏溫度計,還有什么溫度計呢?
- 5為什么要保護野生動物和野生植物?
- 6水稻畝產(chǎn)量的世界紀(jì)錄是多少
- 7請你算一算: 松鼠媽媽采松子,晴天每天可采20個,雨天每天可采12個,它一連幾天采了112個松子,平均每天采14個,問這幾天中有幾天晴天,幾天是雨天?
- 8若m2+n2-6n+4m+13=0,m2-n2=_.
- 9商店運來蘋果500千克,蘋果比梨子少4分之1,梨子有多少千克?
- 10質(zhì)量為M1的木板靜止在光滑的水平面上,在木板上放一質(zhì)量為M2的木塊.現(xiàn)給木塊一個相對于地面的水平速度V0,已知木塊與木板間的動摩擦因數(shù)為u,木板足夠長
- 11一次函數(shù) y=-2x+3 是否在(4,-10)上
- 12兩情若是久長時 又豈在朝朝暮暮