an+2+an+1=4n+1…②.…(2分)
②-①得an+2-an=4,
∵{an}是等差數(shù)列,設(shè)公差為d,∴d=2,(4分)
∵a1+a2=1∴a1+a1+d=1,∴a1=?
1 |
2 |
∴an=2n?
5 |
2 |
(Ⅱ)∵a1=2,a1+a2=1,
∴a2=-1.(8分)
又∵an+2-an=4,
∴數(shù)列的奇數(shù)項與偶數(shù)項分別成等差數(shù)列,公差均為4,
∴a2n-1=4n-2,a2n=4n-5.(11分)
S2n+1=(a1+a3+…+a2n+1)+(a2+a4+…+a2n)(12分)
=(n+1)×2+
(n+1)n |
2 |
n(n?1) |
2 |
=4n2+n+2.(14分)