n≥2時(shí),由(a-1)Sn=a(an-1)(a>0)
得(a-1)Sn-1=a(an-1-1)
∴(a-1)an=a(an-an-1),變形得:
an |
an?1 |
故{an}是以a1=a為首項(xiàng),公比為a的等比數(shù)列,∴an=an(6分)
(Ⅱ)(1)當(dāng)a=1時(shí),A={1},Sn=n,只有n=1時(shí)Sn∈A,
∴a=1不適合題意(7分)
(2)a>1時(shí),A={x|1≤x≤a},S2=a+a2>a,∴S2?A,
即當(dāng)a>1時(shí),不存在滿足條件的實(shí)數(shù)a(9分)
(3)當(dāng)0<a<1時(shí),A={x|a≤x≤1}
而Sn=a+a2+…an=
a |
1?a |
a |
1?a |
因此對任意的n∈N*,要使Sn∈A,
只需0<a<1,
a |
1?a |
1 |
2 |
綜上得實(shí)數(shù)a的范圍是(0,
1 |
2 |