f(x)的圖象的頂點的縱坐標為
4ac?b2 |
4a |
即an=3n-8(n∈N*),
故{an}為一個以-5為首項,以3為公差的等差數(shù)列
(2)由(1)及f(x)的圖象的頂點到x軸的距離構(gòu)成{bn},
則bn=|an|=|3n-8|
當n=1或n=2時3n-8<0,bn=|3n-8|=8-3n b1=5 b2=2
n≥3時3n-8>0 bn=|3n-8|=3n-8
Sn=b1+b2+b3+…+bn
=5+2+(3×3-8)+(3×4-8)…+(3n-8)
=7+3×(3+4+5+…+n)-8(n-2)
=7+
3(n+3)(n?2) |
2 |
=7+
(n?2)(3n+9?16) |
2 |
=7+
(n?2)(3n?7) |
2 |
∴Sn=7+
(n?2)(3n?7) |
2 |