這是我整理的一些內(nèi)容,希望對你有所幫助:
【一些結(jié)論】:以下皆是向量
1 若P是△ABC的重心 PA+PB+PC=0
2 若P是△ABC的垂心 PA•PB=PB•PC=PA•PC(內(nèi)積)
3 若P是△ABC的內(nèi)心 aPA+bPB+cPC=0(abc是三邊)
4 若P是△ABC的外心 |PA|²=|PB|²=|PC|²
(AP就表示AP向量 |AP|就是它的模)
5 AP=λ(AB/|AB|+AC/|AC|),λ∈[0,+∞) 則直線AP經(jīng)過△ABC內(nèi)心
6 AP=λ(AB/|AB|cosB+AC/|AC|cosC),λ∈[0,+∞) 經(jīng)過垂心
7 AP=λ(AB/|AB|sinB+AC/|AC|sinC),λ∈[0,+∞)
或 AP=λ(AB+AC),λ∈[0,+ ∞) 經(jīng)過重心
8.若aOA=bOB+cOC,則0為∠A的旁心,∠A及∠B,C的外角平分線的交點
【以下是一些結(jié)論的有關(guān)證明】
1.
O是三角形內(nèi)心的充要條件是aOA向量+bOB向量+cOC向量=0向量
充分性:
已知aOA向量+bOB向量+cOC向量=0向量,
延長CO交AB于D,根據(jù)向量加法得:
OA=OD+DA,OB=OD+DB,代入已知得:
a(OD+DA)+b(OD+DB) +cOC=0,
因為OD與OC共線,所以可設(shè)OD=kOC,
上式可化為(ka+kb+c) OC+( aDA+bDB)=0向量,
向量DA與DB共線,向量OC與向量DA、DB不共線,
所以只能有:ka+kb+c=0,aDA+bDB=0向量,
由aDA+bDB=0向量可知:DA與DB的長度之比為b/a,
所以CD為∠ACB的平分線,同理可證其它的兩條也是角平分線.
必要性:
已知O是三角形內(nèi)心,
設(shè)BO與AC相交于E,CO與AB相交于F,
∵O是內(nèi)心
∴b/a=AF/BF,c/a=AE/CE
過A作CO的平行線,與BO的延長線相交于N,過A作BO的平行線,與CO的延長線相交于M,
所以四邊形OMAN是平行四邊形
根據(jù)平行四邊形法則,得
向量OA
=向量OM+向量ON
=(OM/CO)*向量CO+(ON/BO)*向量BO
=(AE/CE)*向量CO+(AF/BF)*向量BO
=(c/a)*向量CO+(b/a)*向量BO∴a*向量OA=b*向量BO+c*向量CO
∴a*向量OA+b*向量OB+c*向量OC=向量0
2.
已知△ABC 為斜三角形,且O是△ABC所在平面上的一個定點,動點P滿足向量OP=OA+入{(AB/|AB|^2*sin2B)+AC/(|AC|^2*sin2C)},
求P點軌跡過三角形的垂心
OP=OA+入{(AB/|AB|^2*sin2B)+AC/(|AC|^2*sin2C)},
OP-OA=入{(AB/|AB|^2*sin2B)+AC/(|AC|^2*sin2C)},
AP=入{(AB /|AB|^2*sin2B)+AC /(|AC|^2*sin2C)},
AP•BC=入{(AB•BC /|AB|^2*sin2B)+AC•BC /(|AC|^2*sin2C)},
AP•BC=入{|AB|•|BC|cos(180° -B) / (|AB|^2*sin2B) +|AC|•|BC| cosC/(|AC|^2*sin2C)},
AP•BC=入{-|AB|•|BC| cos B/ (|AB|^2*2sinB cos B) +|AC|•|BC| cosC/(|AC|^2*2sinC cosC)},
AP•BC=入{-|BC|/ (|AB|*2sinB ) +|BC|/(|AC|*2sinC )},
根據(jù)正弦定理得:|AB|/sinC=|AC|/ sinB,所以|AB|*sinB=|AC|*sinC
∴-|BC|/ (|AB|*2sinB ) +|BC|/(|AC|*2sinC )=0,
即AP•BC=0,
P點軌跡過三角形的垂心
3.
OP=OA+λ(AB/(|AB|sinB)+AC/(|AC|sinC))
OP-OA=λ(AB/(|AB|sinB)+AC/(|AC|sinC))
AP=λ(AB/(|AB|sinB)+AC/(|AC|sinC))
AP與AB/|AB|sinB+AC/|AC|sinC共線
根據(jù)正弦定理:|AB|/sinC=|AC|/sinB,
所以|AB|sinB=|AC|sinC,
所以AP與AB+AC共線
AB+AC過BC中點D,所以P點的軌跡也過中點D,
∴點P過三角形重心.
4.
OP=OA+λ(ABcosC/|AB|+ACcosB/|AC|)
OP=OA+λ(ABcosC/|AB|+ACcosB/|AC|)
AP=λ(ABcosC/|AB|+ACcosB/|AC|)
AP•BC=λ(AB•BC cosC/|AB|+AC•BC cosB/|AC|)
=λ([|AB|•|BC|cos(180° -B)cosC/|AB|+|AC|•|BC| cosC cosB/|AC|]
=λ[-|BC|cosBcosC+|BC| cosC cosB]
=0,
所以向量AP與向量BC垂直,
P點的軌跡過垂心.
5.
OP=OA+λ(AB/|AB|+AC/|AC|)
OP=OA+λ(AB/|AB|+AC/|AC|)
OP-OA =λ(AB/|AB|+AC/|AC|)
AP=λ(AB/|AB|+AC/|AC|)
AB/|AB|、AC/|AC|各為AB、AC方向上的單位長度向量,
向量AB與AC的單位向量的和向量,
因為是單位向量,模長都相等,構(gòu)成菱形,
向量AB與AC的單位向量的和向量為菱形對角線,
易知是角平分線,所以P點的軌跡經(jīng)過內(nèi)心.
總結(jié)一下高一向量中關(guān)于重心,中心,內(nèi)心,外心,
總結(jié)一下高一向量中關(guān)于重心,中心,內(nèi)心,外心,
數(shù)學(xué)人氣:144 ℃時間:2020-06-02 21:17:11
優(yōu)質(zhì)解答
我來回答
類似推薦
- 如何用向量證明重心定理
- 向量證明重心性質(zhì)
- 用向量證明三角形的重心坐標(biāo)
- 用向量法證明:三角形的外心、重心、垂心共線.
- 向量證明三角形重心定理
- 求解一道英語語法題
- class seven is having an English class now.改錯
- 我最好的朋友(英語作文)
- 人名迷:1.油煎豆腐(打唐朝一詩人名)
- 口算43+5 先算什么 再算什么
- 1.設(shè)f(x)=asin(πx+A)+bcos(πx+B),其中a,b,A,B為非零常數(shù),若f(2009)=-1,則f(2010)= 2.函數(shù)y=2sin(π/6-2x) x屬于【0,π】的單調(diào)遞增區(qū)間是.
- 1、She (usually) helps me with the English. 2、John (sometimes) watches TV. 對()中的部分提問,
猜你喜歡
- 1船速為4m/s,水速為5m/s,則該船能否垂直過河?
- 2小學(xué)六年級上學(xué)期語文補(bǔ)充習(xí)題第20課怎么寫
- 3管線長100米直徑20厘米油密度是0.830算里面多少油
- 4that從句中能不能用主將從現(xiàn).look,see,watch的區(qū)別
- 5一個數(shù)擴(kuò)大100倍后得到20,這個數(shù)是();把0.5縮小到它的十分之一是()
- 6如圖,已知直線AB和CD相交于點O,∠COE是直角,OF平分∠AOE.寫出∠AOC與∠BOD的大小關(guān)系
- 7什么是畫面的張力
- 8一道數(shù)學(xué)題火速!要過程,最好講解!
- 9如何用結(jié)晶法分離乙醇和水?
- 10用不等式表示"a"與4的差是非負(fù)數(shù)
- 11A種飲料每瓶是5分之8升,B種飲料每瓶5分之6升,A種飲料比B種飲料多( )升,多( )百分之幾.
- 12用容量瓶成液體并用玻璃棒引流時,為什么玻璃棒要放在刻度線以下