∵Z=[4x^2+(4m+4n-1)x-(5m+2n-1)] / [(4m+4n+1)x-(5m+2n-1)]=1+(4x^2-2x)/ [(4m+4n+1)x-(5m+2n-1)]>1
∴F(x)={[4x^2+(4m+4n-1)x-(5m+2n-1)] / [(4m+4n+1)x-(5m+2n-1)]} ^(m/x)<1+(m/x)×
(4x^2-2x)/ [(4m+4n+1)x-(5m+2n-1)]=1+(4mx-2m)/ [(4m+4n+1)x-(5m+2n-1)
又∵A=(4mx-2m)/ [(4m+4n+1)x-(5m+2n-1)是減函數(shù)(可用導(dǎo)數(shù)證)
∴F(x)<1+(4m×2-2m)/ [(4m+4n+1)×2-(5m+2n-1)=1+6m/(3m+6n+3)<1+[m/(n+1)]
不好意思,這部分F(x)={[4x^2+(4m+4n-1)x-(5m+2n-1)] / [(4m+4n+1)x-(5m+2n-1)]} ^(m/x)<1+(m/x)×(4x^2-2x)/ [(4m+4n+1)x-(5m+2n-1)]不太會(huì),是不是應(yīng)該用導(dǎo)數(shù)證?
根據(jù)樓主的提示,證{1+[2/(m+2n+1)]}^m < 1+[m/(n+1)]
設(shè):y={1+[2/(m+2n+1)]}^m ,y'=m{1+[2/(m+2n+1)]}^(m-1)×(-2)+{1+[2/(m+2n+1)]}^m×ln{1+[2/(m+2n+1)]}={1+[2/(m+2n+1)]}^(m-1)×【{1+[2/(m+2n+1]}ln{1+[2/(m+2n+1)]}-2m】
當(dāng)m、n∈N+時(shí),y‘<0,y為減函數(shù),當(dāng)m=1時(shí),y最大
∴y≤1+2/(1+2n+1)=1+[1/(n+1)]<1+[m/(n+1)]
一個(gè)冪指函數(shù),猜想其為減函數(shù),但導(dǎo)數(shù)法行不,不知其他方法
一個(gè)冪指函數(shù),猜想其為減函數(shù),但導(dǎo)數(shù)法行不,不知其他方法
給定如下冪指函數(shù)
F(x)={[4x^2+(4m+4n-1)x-(5m+2n-1)] / [(4m+4n+1)x-(5m+2n-1)]} ^(m/x)
其中m,n均為任意正整數(shù)常量,x>2,
求證F(x)的最大值小于1+[m/(n+1)]
我已在Excel里試了多組m,n,發(fā)現(xiàn)F為減函數(shù),但用導(dǎo)數(shù)會(huì)有很大計(jì)算量,末了還得解一個(gè)含ln的超越方程,實(shí)在沒轍了!下星期就要搞定它,有人能幫忙證了此題一定重謝!
請(qǐng)教“孤獨(dú)安河”,你用到了一個(gè)命題,即“若f(x)為正值函數(shù),則函數(shù) F(x)=[1+f(x)]^(1/x) 單調(diào)遞減”,
請(qǐng)問如何證明?
這個(gè)命題可能幾乎正確,但當(dāng)f(x)=x^x時(shí)就為假了,此題的情形不是極端情形,那么它是否屬于命題正確的范疇?
注意:此題難度在于F不是初等復(fù)合函數(shù),所以“同增異減”的規(guī)則沒法應(yīng)用,一般來講只能求導(dǎo)解決,但此題用求導(dǎo)明顯很笨了.
Lunch 1964的思路不錯(cuò),你那一步用到了伯努利不等式,但它的適用范圍是當(dāng)指數(shù)m/x
給定如下冪指函數(shù)
F(x)={[4x^2+(4m+4n-1)x-(5m+2n-1)] / [(4m+4n+1)x-(5m+2n-1)]} ^(m/x)
其中m,n均為任意正整數(shù)常量,x>2,
求證F(x)的最大值小于1+[m/(n+1)]
我已在Excel里試了多組m,n,發(fā)現(xiàn)F為減函數(shù),但用導(dǎo)數(shù)會(huì)有很大計(jì)算量,末了還得解一個(gè)含ln的超越方程,實(shí)在沒轍了!下星期就要搞定它,有人能幫忙證了此題一定重謝!
請(qǐng)教“孤獨(dú)安河”,你用到了一個(gè)命題,即“若f(x)為正值函數(shù),則函數(shù) F(x)=[1+f(x)]^(1/x) 單調(diào)遞減”,
請(qǐng)問如何證明?
這個(gè)命題可能幾乎正確,但當(dāng)f(x)=x^x時(shí)就為假了,此題的情形不是極端情形,那么它是否屬于命題正確的范疇?
注意:此題難度在于F不是初等復(fù)合函數(shù),所以“同增異減”的規(guī)則沒法應(yīng)用,一般來講只能求導(dǎo)解決,但此題用求導(dǎo)明顯很笨了.
Lunch 1964的思路不錯(cuò),你那一步用到了伯努利不等式,但它的適用范圍是當(dāng)指數(shù)m/x
數(shù)學(xué)人氣:623 ℃時(shí)間:2020-05-25 10:36:16
優(yōu)質(zhì)解答
我來回答
類似推薦
- 證明函數(shù)e的x次冪減e的負(fù)x次冪的導(dǎo)數(shù)大于等于2
- 冪指函數(shù)的導(dǎo)數(shù)
- 已知函數(shù)y=e2x冪+e-x冪的導(dǎo)數(shù)
- e^-x -1 (e的-x次冪減1)的導(dǎo)數(shù)怎么求 可導(dǎo)的數(shù)才有反函數(shù)嗎? 否則怎么判定一個(gè)函數(shù)是否有反函數(shù)
- 利用冪函數(shù)的求導(dǎo)公式,求下列函數(shù)的導(dǎo)數(shù)..
- 函數(shù)f(x)=sinx-cosx^2的最小值是?
- 英語翻譯
- I took my grandpa to the hospital this morning,_____ I missed the first class.
- So crazy
- 方差是各個(gè)數(shù)據(jù)與平均數(shù)之差的平方的平均數(shù)
- 函數(shù)y=f(x)與它反函數(shù)y=f^-1(x)怎么讀?
- These are photos of my families.Look at them 改錯(cuò)
猜你喜歡
- 1平面與平面重合,是否屬于平行一類?那重合的兩直線,也屬于平行一類的嗎?
- 2非洲每年因饑餓死亡的人數(shù)及現(xiàn)在饑餓人口數(shù)量拜托各位了 3Q
- 3decide to do sth.還=什么
- 4(7/8)o you think of london?B:5.____london is one of the liveliest cities
- 5啤酒可以托運(yùn)嗎
- 6邊長為2√6的等邊三角形的中心到一邊的距離為?
- 7please give your hand to help me
- 8已知2的X次方等于3的Y次方等于6的Z次方不等等于1,證明X分之一加Y分之一等于Z分之一.
- 9幫我做做?
- 10機(jī)械分析天平TG628A的使用說明書
- 11in winter ,we wear warm coats to protect our bodies_.
- 12( )was most importance to her ,she told me,was her family it this what as