∵對(duì)任意實(shí)數(shù)x均有f(x)≥0成立,
∴ax2+bx+1=ax2+(a+1)x+1≥0,恒成立,
∴
|
∴a=1,b=2;
故答案為:a=1,b=2…(6分)
(2)當(dāng)x∈[-2,2]時(shí),求函數(shù)?(x)=ax2+btx+1=x2+2tx+1=(x+t)2+1-t2,
函數(shù)的對(duì)稱(chēng)軸為x=-t,
當(dāng)t≤0時(shí),-t≥0,f(x)在(-2,-t)上為減函數(shù),
f(x)在x=-2處取得最大值,g(x)max=g(-2)=5-4t;
當(dāng)t>0時(shí),在x=2處取得最大值,g(x)max=g(2)=5+4t;
函數(shù)?(x)=ax2+btx+1的最大值g(t).
∴g(t)=
|