1+sin2x |
(sin2x+1)2 |
1 |
1+sin2x |
(1)因為1+sin2x≠0所以sin2x≠-1,2x≠2kπ?
π |
2 |
π |
4 |
又0<1+sin2x≤2,所以f(x)≥
1 |
2 |
所以定義域為{x|x≠kπ?
π |
4 |
1 |
2 |
(2)因為f(x)=2,所以
1 |
1+sin2x |
1 |
2 |
因為?
π |
4 |
3π |
4 |
π |
2 |
3π |
2 |
所以2x=?
π |
6 |
7π |
6 |
所以x=?
π |
12 |
7π |
12 |
(sinx+cosx)2 |
2+2sin2x?cos22x |
π |
4 |
3π |
4 |
1+sin2x |
(sin2x+1)2 |
1 |
1+sin2x |
π |
2 |
π |
4 |
1 |
2 |
π |
4 |
1 |
2 |
1 |
1+sin2x |
1 |
2 |
π |
4 |
3π |
4 |
π |
2 |
3π |
2 |
π |
6 |
7π |
6 |
π |
12 |
7π |
12 |