精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 證明以下三角函數(shù)

    證明以下三角函數(shù)
    (cot^2A*((secA-1)/(1+sinA)))+(sec^2A*((sinA-1)/(1+secA)))=0
    雖然是簡單的三角函數(shù) 但是這個題目 很有難度
    其他人氣:610 ℃時間:2020-03-27 16:10:24
    優(yōu)質(zhì)解答
    因為:
    (cota)^2(seca-1)/(1+sina)
    =(sina)^2·cot^2a(seca-1)/(sina)^2·(1+sina)
    = cosa(1-cosa)/[(sina)^2·(1+sina)]
    =cosa(1+sina)/[(1+sina)·(sina)^2)
    =cosa/[1-(cosa)^2)
    =cosa/(1-cosa)(1+cosa)
    =cosa/(1+sina)(1+cosa)
    (sec2a)^2(sina-1)/(1+seca)
    =(sina-1)/(1+seca)(cosa)^2
    =(sina-1)/cosa(1+cosa)
    所以
    (cota)^2(seca-1)/(1+sina)+(sec2a)^2(sina-1)/(1+seca)
    = [cosa/(1+sina) + (sina-1)/cosa]/(1+cosa)
    =[(cosa)^2 + (sina-1)(1+sina)]/[(1+sina)cosa(1+cosa)]
    =[(cosa)^2 + (sina)^2 -1]/[(1+sina)cosa(1+cosa)]
    = 0
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版