∴E是AB的中點(diǎn),
在Rt△OEB中,OB=2,∠B=30°,
∴OE=1,
∴BE=
3 |
∴AB=2BE=2
3 |
(2)解法一:∵∠BOD=∠B+∠BCO,∠BCO=∠A+∠D.
∴∠BOD=∠B+∠A+∠D. …(3分)
又∵∠BOD=2∠A,∠B=30°,∠D=20°,
∴2∠A=∠B+∠A+∠D=∠A+50°,∠A=50°,…(4分)
∴∠BOD=2∠A=100°.…(5分)
解法二:如圖,連接OA.
∵OA=OB,OA=OD,
∴∠BAO=∠B,∠DAO=∠D,
∴∠DAB=∠BAO+∠DAO=∠B+∠D. …(3分)
又∵∠B=30°,∠D=20°,
∴∠DAB=50°,…(4分)
∴∠BOD=2∠DAB=100°(同弧所對(duì)的圓周角等于它所對(duì)圓心角的一半). …(5分)